首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大型圆形沉井结构应力及其周边沉降计算
引用本文:邓友生,万昌中,闫卫玲,时一波,肖本林,赵明华.大型圆形沉井结构应力及其周边沉降计算[J].岩土力学,2015,36(2):502-508.
作者姓名:邓友生  万昌中  闫卫玲  时一波  肖本林  赵明华
作者单位:1.湖北工业大学 土木工程与建筑学院,湖北 武汉 430068; 2.中铁大桥局集团第六工程有限公司,湖北 武汉430100;3.湖南大学 岩土工程研究所,湖南 长沙 410082
摘    要:根据武汉鹦鹉洲长江大桥北锚碇大型圆形沉井结构特点与工程地质条件,结合施工现场沉降监测控制点的实测数据,采用大型有限元计算程序ADINA建立了三维计算模型,对沉井结构及其周围的地下连续防护墙进行了有限元分析,分析了沉井在下沉与封底过程中其结构自身的应力分布与变形情况,并探索了沉井在下沉过程中对周边邻近高层建筑与堤岸构筑物的影响。计算研究结果表明:沉井外围的地下连续防护墙主应力会随沉井的下沉而相应地增加,在沉井封底后其变形主要出现在上部和底部;而沉井在下沉过程中其结构底部的刃脚、十字隔墙、十字隔墙与环形井壁结合处均会出现较大拉应力;沉井的周边土体沉降量会随下沉深度而相应地增大。在沉井封底完成后测点的沉降理论计算值与实际监测值比较吻合,一般计算值较监测值稍小:二者的差值在邻近高层建筑的沉降控制测点为-1.22~-0.88 mm;而在附近的长江大堤处的关键测点为-1.27~0.64 mm。该计算模型对锚碇沉井下沉过程的沉降控制具有参考作用。

关 键 词:锚碇沉井  地下连续墙  有限元  应力  沉降  监测
收稿时间:2013-10-14

Stress of large cylindrical caisson structure and its adjacent settlement
DENG You-sheng,WAN Chang-zhong,YAN Wei-ling,SHI Yi-bo,XIAO Ben-lin,ZHAO Ming-hua.Stress of large cylindrical caisson structure and its adjacent settlement[J].Rock and Soil Mechanics,2015,36(2):502-508.
Authors:DENG You-sheng  WAN Chang-zhong  YAN Wei-ling  SHI Yi-bo  XIAO Ben-lin  ZHAO Ming-hua
Institution:1. School of Civil Engineering &; Architecture, Hubei University of Technology, Wuhan, Hubei 430068, China; 2. The 6th Engineering Co., Ltd., MBEC, Wuhan, Hubei 430100, China; 3. Institute of Geotechnical Engineering, Hunan University, Changsha, Hunan 410082, China
Abstract:Given the structural features and engineering geological conditions of north anchorage large cylindrical caisson of Wuhan Parrot Cay Yangtze River bridges, combining with in-situ monitored data of some key points, three dimensional calculation modes of FEM are established with software ADINA to analyze stress and deformation of caisson structures and its adjacent diaphragm wall. The stress distribution and deformation of the structures are studied during the caisson sinking and its bottom sealing. The effects of caisson sinking on adjacent high-rise buildings and bank structures are also analyzed comparatively. The research results show that: the principal stress of diaphragm wall increases with the increasing of sinking depth, and its deformation appears mainly in its top and bottom after the caisson bottom sealing, the tension stress would be higher at its structure cutting edge, the middle of cross wall, the joints of cross wall and inner face of caisson well. The corresponding settlement of adjacent soil around the caisson increases with the increasing of sinking length as well. Settlements of monitored points from calculation agree well with measured data after bottom sealing, and the former is generally less than the latter. The differences between them are from -1.22 mm to -0.88 mm at the key points of adjacent high-rise buildings, and those at the key points near the Yangtze River bank are from -1.27 mm to 0.64 mm. The calculation model will provide a guide for settlement control during the caisson sinking.
Keywords:anchorage caisson  diaphragm wall  finite element  stress  settlement  monitoring
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号