首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Permian Tectonic Evolution in Southwestern Khanka Massif: Evidence from Zircon U-Pb Chronology, Hf isotope and Geochemistry of Gabbro and Diorite
作者姓名:CAO Huahu  XU Wenliang  PEI Fuping and ZHANG Xingzhou
作者单位:College of Earth Sciences, Jilin University, Changchun, Jilin 130061, China
摘    要:Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating and geochemical data for the Permian gabbros and diorites in the Hunchun area are presented to constrain the regional tectonic evolution in the study area. Zircons from gabbro and diorite are euhedral-subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.26–1.22), implying their magmatic origin. The dating results indicate that the gabbro and diorite formed in the Early Permian (282±2 Ma) and in the Late Permian (255±3 Ma), respectively. In addition, the captured zircons with the weighted mean age of 279±4 Ma are also found in the diorite, consistent with the formation age of the gabbro within uncertainty. The gabbros belong chemically to low-K tholeiitic series, and are characterized by low rare earth element (REE) abundances, flat REE pattern, weak positive Eu anomalies (δEu), and depletion in high field strength elements (HFSEs, Nb, Ta, and Ti), similar to the high-aluminum basalts from island arc setting. Initial Hf isotopic ratios of zircons from the gabbro range from +7.63 to +14.6, suggesting that its primary magma could be mainly derived from partial melting of a depleted lithospheric mantle. The diorites belong to middle K calc-alkaline series. Compared with the gabbros, the diorites have higher REE abundance, weak negative Eu anomalies, and more depletion in HFSEs (Nb, Ta, and Ti), similar chemically to the volcanic rocks from an active continental margin setting. Initial Hf isotopic ratios and Hf two-stage model ages of zircons from the diorite range from +11.22 to +14.17 and from 424 to 692 Ma, respectively, suggesting that its primary magma could be mainly derived from partial melting of the Early Paleozoic and/or Neoproterozoic accretted lower crust. Taken together, it is suggested that geochemical variations from the Early Permian gabbros to the Late Permian diorites reveal that the subduction of the Paleo-Asian oceanic plate beneath the Khanka Massif and collision between the arc and continent (Khanka Massif) happened in the late stage of the Late Paleozoic.

关 键 词:Khanka  Massif    the  Paleo-Asian  ocean    arc-continent  collision    Permian  magmatism    geochemistry
收稿时间:2009/12/5 0:00:00
修稿时间:2010/4/11 0:00:00

Permian Tectonic Evolution in Southwestern Khanka Massif: Evidence from Zircon U‐Pb Chronology,Hf isotope and Geochemistry of Gabbro and Diorite
Authors:CAO Huahua  XU Wenliang  PEI Fuping  ZHANG Xingzhou
Institution:College of Earth Sciences, Jilin University, Changchun, Jilin 130061, China
Abstract:Laser ablation‐inductively coupled plasma mass spectrometry (LA‐ICP‐MS) zircon U‐Pb dating and geochemical data for the Permian gabbros and diorites in the Hunchun area are presented to constrain the regional tectonic evolution in the study area. Zircons from gabbro and diorite are euhedral‐subhedral in shape and display fine‐scale oscillatory zoning as well as high Th/U ratios (0.26–1.22), implying their magmatic origin. The dating results indicate that the gabbro and diorite formed in the Early Permian (282±2 Ma) and in the Late Permian (255±3 Ma), respectively. In addition, the captured zircons with the weighted mean age of 279±4 Ma are also found in the diorite, consistent with the formation age of the gabbro within uncertainty. The gabbros belong chemically to low‐K tholeiitic series, and are characterized by low rare earth element (REE) abundances, flat REE pattern, weak positive Eu anomalies (δEu), and depletion in high field strength elements (HFSEs, Nb, Ta, and Ti), similar to the high‐aluminum basalts from island arc setting. Initial Hf isotopic ratios of zircons from the gabbro range from +7.63 to +14.6, suggesting that its primary magma could be mainly derived from partial melting of a depleted lithospheric mantle. The diorites belong to middle K calc‐alkaline series. Compared with the gabbros, the diorites have higher REE abundance, weak negative Eu anomalies, and more depletion in HFSEs (Nb, Ta, and Ti), similar chemically to the volcanic rocks from an active continental margin setting. Initial Hf isotopic ratios and Hf two‐stage model ages of zircons from the diorite range from +11.22 to +14.17 and from 424 to 692 Ma, respectively, suggesting that its primary magma could be mainly derived from partial melting of the Early Paleozoic and/or Neoproterozoic accretted lower crust. Taken together, it is suggested that geochemical variations from the Early Permian gabbros to the Late Permian diorites reveal that the subduction of the Paleo‐Asian oceanic plate beneath the Khanka Massif and collision between the arc and continent (Khanka Massif) happened in the late stage of the Late Paleozoic.
Keywords:Khanka Massif  the Paleo‐Asian ocean  arc‐continent collision  Permian magmatism  geochemistry
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号