首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Geochemistry and Zircon U–Pb–Hf Isotopic Systematics of the Sanchahe Quartz Monzonite Intrusion in the North Qinling Tectonic Zone, Central China: Implications for its Petrogenesis and Tectonic Setting
作者姓名:YAN Ming  LIU Shuwen  LI Qiugen  ZHANG Wanyi  YANG Pengtao  YAN Zhen  WANG Ruiting  WANG Wei and GUO Rongrong
作者单位:1 Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China 2 Development Research Center, China Geological Survey, Beijing 100037, China 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 4 Geological Exploration Institution of Northwest Mining and Geological Exploration Bureau for Nonferrous Metals, Xi’an, Shaannxi 710054, China
基金项目:This study is financially supported by the National Geological Survey Project and National Scientific and Technological Support Project (Grant Nos. 1212011085534 and 2011BAB04B05).
摘    要:The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.

关 键 词:Sanchahe  quartz  monzonite  intrusion  zircon  U–Pb  ages  and  Lu–Hf  isotopes  petrochemistry  and  petrogenesis  tectonic  setting  North  Qinling  tectonic  zone.
收稿时间:2013/2/25 0:00:00
修稿时间:2013/10/11 0:00:00
本文献已被 CNKI 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号