首页 | 本学科首页   官方微博 | 高级检索  
     检索      


End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem
Authors:Gert Jan Weltje
Institution:(1) Geology Department, Faculty of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
Abstract:Linear mixing models of compositional data have been developed in various branches of the earth sciences (e.g., geochemistry, petrology, mineralogy, sedimentology) for the purpose of summarizing variation among a series of observations in terms of proportional contributions of (theoretical) end members. Methods of parameter estimation range from relatively straightforward normative partitioning by (nonnegative) least squares, to more sophisticated bilinear inversion techniques. Solving the bilinear mixing problem involves the estimation of both mixing proportions and end-member compositions from the data. Normative partitioning, also known as linear unmixing, thus can be regarded as a special situation of bilinear unmixing with (supposedly) known end members. Previous attempts to model linear mixing processes are reviewed briefly, and a new iterative strategy for solving the bilinear problem is developed. This end-member modeling algorithm is more robust and has better convergence properties than previously proposed numerical schemes. The bilinear unmixing solution is intrinsically nonunique, unless additional constraints on the model parameters are introduced. In situations where no a priori knowledge is available, the concept of an “ optimal ” solution may be used. This concept is based on the trade-off between mathematical and geological feasibility, two seemingly contradictory but equally desirable requirements of the unmixing solution.
Keywords:inversion  compositional data  linear mixing model  constrained weighted least squares
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号