首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crustal properties from S-wave and gravity data along a seismic refraction profile in Romania
Authors:V Raileanu  A Bala  F Hauser  C Prodehl  W Fielitz
Institution:

aNational Institute for Earth Physics, P.O. Box MG-2, RO-077125 Bucuresti-Magurele, Romania

bGeophysical Institute, University of Karlsruhe, Hertzstr. 16, D-76187 Karlsruhe, Germany

cGeological Institute, University of Karlsruhe, Kaiserstr. 12, D-76131 Karlsruhe, Germany

Abstract:VRANCEA'99 is a seismic refraction line that was carried out in 1999 to investigate the deep structure and physical properties of the upper lithosphere of the southeastern Carpathians and its foreland. It runs from the city of Bacau to the Danube River, traversing the Vrancea epicentral area of strong intermediate-depth seismicity and the city of Bucharest.

Interpretation of P-wave arrivals led to a velocity model that displays a multi-layered crust with velocities increasing with depth. The range of P wave velocities in the sedimentary cover increases from N to S and a structuring of the autochthonous basement of the Moesian Platform is observed. The crystalline crust displays thickness variations, but at the same time the lateral velocity structure along the seismic line remains almost constant. An intra-crustal boundary separates an upper crust from the lower crust. Within the upper mantle a low velocity zone is detected at a depth of about 55-km.

The interpretation of observable S-waves resulted in a velocity model that shows the same multi-layered crust, with S-velocities increasing similarly with depth as the P-waves. The corresponding Poisson's ratio is highly variable throughout the crust and ranges from 0.20–0.35 for the sedimentary cover to 0.22–0.25 for the crystalline crust. The interpretation of the Vp, Vs and Poisson's ratio in petrological terms suggests a large variety of rocks from sand and clay to sandstone, limestone and dolomite within the sedimentary cover. Within the crystalline crust the most probably rock types are granite, granodiorite, granite–gneiss and/or felsic amphibolite–gneiss in the upper part and gneiss and /or amphibolite in the lower part.

Based on the 2-D seismic velocity model, a density model is developed. Density values are assigned to each layer in agreement with the P-wave velocity model and with values accepted for the geological units in the area. After several iterations a good fit between the computed and observed Bouguer anomalies was obtained along the seismic line.

Keywords:Lithosphere structure  Shear waves  Gravity profile  Poisson's ratio  Eastern Carpathians  Moesia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号