首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Response changes of some wells in the mainland subsurface fluid monitoring network of China, due to the September 21, 1999, Ms7.6 Chi-Chi Earthquake
Authors:Fu-qiong Huang  Chun-lin Jian  Yi Tang  Gui-ming Xu  Zhi-hui Deng  Gong-cai Chi
Institution:

aInstitute of Geophysics, Beijing, 100081, China

bCenter for Analysis and Prediction, China Earthquake Administration, Beijing 100036, China

cChina Earthquake Administration (CEA), Beijing 100036, China

dEarthquake Administration of Jiangsu province, Nanjing 210014, China

eGeological Institute, China Earthquake Administration, Beijing 100029, China

fEarthquake Administration of Liaoning Province, Shenyang 110031, China

Abstract:About 60 hydrologic changes in response to the Chi-Chi earthquake with Ms7.6 on September 21, 1999, occurred in 52 wells, including groundwater level, temperature, discharge rate, well pressure and radon, etc., in the subsurface fluid monitoring network. These response changes were mainly co-seismic, but some pre- and post-earthquake changes occurred mainly within 5 days before and after the Chi-Chi earthquake. The response changes of different wells clustering in different tectonic areas showed different features. These changes are distributed in five areas named as A, B, C, D and E. The response changes in A area with short hypo-central distance (less than 550 km) were mainly pre-earthquake changes occurring more than 5 days before the event. Those in area B (in Huanan tectonic block) and C (in Huabei tectonic block) were mainly co-seismic changes. The hypo-central distance is about 1100–1280 and 800–1160 km, respectively. These changes were high-frequency water-level oscillations induced by seismic waves and accompanied by prominent and permanent water-level jumps and drops. There are also some post-seismic changes including discharge rate and water radon and well pressure changes in area C. Those in area D in the Yanshan tectonic block were mainly co-seismic and post-seismic changes including water level, water temperature, and water radon concentration, etc., showing prominent and permanent water-level jumps and drops and rising concentrations of water radon. The hypo-central distance is about 1750–2060 km. Those in Area E were mainly co-seismic changes showing prominent and permanent water-level jump. The hypo-central distance is about 1810–2120 km. Three moderate earthquakes occurred in area D and one strong earthquake occurred in area E 4 months after the Chi-Chi earthquake. The different features of the response changes might be caused by the changes of local hydrologic conditions (like permeability) induced by seismic waves. On the other hand, these response changes might indicate the near-critical conditions in the area where the response changes clustered. Such changes might be understood by the crustal buckling hypothesis. It is thought that the response changes might be a kind of precursor that implies elevated earthquake risk in the region.
Keywords:Response changes  The Chi-Chi earthquake  Subsurface fluid  Crustal buckling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号