首页 | 本学科首页   官方微博 | 高级检索  
     检索      


What drove late Mesozoic extension of the northern China–Mongolia tract?
Authors:Qing-Ren Meng  
Institution:Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China
Abstract:The northern China–Mongolia tract exhibited a tectonic transition from contractional to extensional deformation in late Mesozoic time. Late Middle to early Late Jurassic crustal shortening is widely thought to have resulted from collision of an amalgamated North China–Mongolia block and the Siberian plate, but widespread late Late Jurassic–Early Cretaceous extension has not been satisfactorily explained by existing models. Some prominent features of the extensional tectonics of the northern China–Mongolia tract are: (1) Late Jurassic voluminous volcanism prior to Early Cretaceous large-magnitude rapid extension; (2) overlapping in time of contractional deformation in the Yinshan–Yanshan belt with development of extension-related basins in the interior of the northern China–Mongolia tract; and (3) widespread occurrence of alkali granitic plutonism, extensional basins and metamorphic core complexes in the Early Cretaceous. A new explanation is advanced in this study for this sequence of events. The collision of amalgamated North China–Mongolia with Siberia led to crustal overthickening of the northern China–Mongolia tract and formation of a high-standing plateau. Subsequent breakoff at depth of the north-dipping Mongol–Okhotsk oceanic slab is suggested as the main trigger for late Mesozoic lithospheric extension of that tract. Slab breakoff resulted in mantle lithospheric stretching of the adjacent northern China–Mongolia tract with subsequent ascent of hot asthenosphere and magmatic underplating at the base of the crust. Collectively, these phenomena triggered gravitational collapse of the previously thickened crust, leading to late Late Jurassic–Early Cretaceous crustal extension, and importantly, coeval contraction along the southern margin of the plateau in the Yinshan–Yanshan belt. The proposed model provides a framework for interpreting the spatial and temporal relationships of distinct processes and reconciling some seemingly contradictory phenomena, such as the synchronous extension of northerly terranes during major contraction in the neighboring Yanshan–Yinshan belt.
Keywords:Crustal extension  Gravitational collapse  Yinshan  Daqing Shan  Northern China and Mongolia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号