首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen and carbon in solid solution in oxides and silicates
Authors:Friedemann Freund
Institution:1. NASA Ames Research Center, MS 239-4, 94035, Moffett Field, CA, USA
Abstract:The dissolution of H2O and CO2 in structurally dense, nominally anhydrous and non-carbonate oxide matrices such as MgO and CaO is reviewed. H2O and CO2 are treated as gaseous oxide components which enter into solid solution with the refractory oxide hosts. They form anion complexes associated with cation vacancy sites. Evidence is presented that OH? pairs which derive from the dissolution of H2O are subject to a charge transfer (CT) conversion into peroxy moieties and molecular hydrogen, O 2 2? ... H2. Because the O 2 2? moiety is small (O?-O? distance ≈ 1.5 Å) high pressure probably favors the CT conversion. Mass spectroscopic studies show that molecular H2 may be lost from the solid which retains excess oxygen in the form of O 2 2? , leading to the release of atomic O. The dissociation of O 2 2? moieties into a vacancy-bound O? state and an unbound O? state can be followed by measuring the internal redox reactions involving transition metal impurities, the transient paramagnetism of the O? and their effect on the d.c. conductivity. Evidence is presented that CO2 molecules dissolve dissociatively in the structurally dense oxide matrix, as if they were first to dissociate into CO+O and then to form separate solute moieties CO 2 2? and O 2 2? , both associated with cation vacancy sites. In the CO 2 2? moiety (C-O? distance 1.2–1.3 Å, OCO angle ≈ 130°) the C atom probably sits off center. The transition of the C atom into interstitial sites is accompanied by dissociation of the CO 2 2? moiety into CO? and O?. This transition can be followed by infrared spectroscopy, using OH? as local probes. Further support derives from magnetic susceptibility, thermal expansion, low frequency dielectric loss and low temperature deformation measurements. The recently observed emission of O and Mg atoms besides a variety of molecules such as CO, CO2, CH4, HCN and other hydrocarbons during impact fracture of MgO single crystals is presented and discussed in the light of the other experimental data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号