首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3
Authors:Kurt Leinenweber  Wataru Utsumi  Yoshihiko Tsuchida  Takehiko Yagi  Kei Kurita
Institution:1. Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, 106, Tokyo, Japan
4. Geophysical Institute, Faculty of Science, University of Tokyo, Bunkyo-ku, 113, Tokyo, Japan
Abstract:New high-pressure orthorhombic (GdFeO3-type) perovskite polymorphs of MnSnO3 and FeTiO3 have been observed using in situ powder X-ray diffraction in a diamond-anvil cell with synchrotron radiation. The materials are produced by the compression of the lithium niobate polymorphs of MnSnO3 and FeTiO3 at room temperature. The lithium niobate to perovskite transition occurs reversibly at 7 GPa in MnSnO3, with a volume change of -1.5%, and at 16 GPa in FeTiO3, with a volume change of -2.8%. Both transitions show hysteresis at room temperature. For MnSnO3 perovskite at 7.35 (8) GPa, the orthorhombic cell parameters are a=5.301 (2) A, b=5.445 (2) Å, c=7.690 (8) Å and V= 221.99 (15) Å3. Volume compression data were collected between 7 and 20 GPa. The bulk modulus calculated from the compression data is 257 (18) GPa in this pressure region. For FeTiO3 perovskite at 18.0 (5) GPa, cell parameters are a=5.022 (6) Å, b=5.169 (5) Å, c=7.239 (9) Å and V= 187.94 (36) Å3. Based on published data on the quench phases, the FeTiO3 perovskite breaks down to a rocksalt + baddelyite mixture of ldquoFeOrdquo and TiO2 at 23 GPa. This is the first experimental verification of the pressure-induced breakdown of a perovskite to simple oxides.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号