首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ion probe dating of a migmatite in SW Sweden: the fate of zircon in crustal processes
Authors:A Scherstn  S Larson  D H Cornell  J Stigh
Institution:a Department of Geology, Earth Sciences Centre, Göteborg University, Box 460, Göteborg SE-40530, Sweden;b Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK
Abstract:A migmatitic orthogneiss in the Western Segment in the Sveconorwegian Province of the Baltic Shield was dated using the ion-probe U–Pb method on zircon grains, which were also analysed for rare earth elements. Mesosome zircons have 1.605±0.010 Ga magmatic cores, which places the gneiss protolith in the same 1.61–1.59 Ga time bracket as continental arc-related gneisses, abundant in this part of the Sveconorwegian Province. These cores show REE profiles with strong HREE enrichment, positive Ce- and negative Eu-anomalies, typical of magmatic zircon. Migmatite leucosomes are folded and parallel with or slightly discordant to the fabric. They contain a small population of zircon with cores and metamorphic rims, which are interpreted as xenocrysts incorporated in the leucosome during melting of the mesosome. CL-bright metamorphic embayments and rims on xenocrysts reflect 1.01±0.05 Ga Sveconorwegian metamorphic reworking. Ce-anomalies are nearly absent and Eu-anomalies are reduced relative to igneous spots. This is probably a feature of fluid controlled environments where Ce and Eu oxidation states are buffered by the metamorphic fluid. From this and discordant rims from the mesosome we also conclude that the rims formed by reworking of the older zircon where the Pb-loss was also fluid induced. In the leucosome veins, magmatic acicular zircon gives 0.92±0.01 Ga, ascribed to the crystallisation of the veins. They originated by local melting, probably augmented by magma that formed at a deeper level. Widespread granitic and noritic late-Sveconorwegian magmatism close to 0.92 Ga in other parts of the Western Segment has equivalents in the Norwegian sectors of the Sveconorwegian Province. Leucosome formation was therefore part of a regional event related to exhumation of the Sveconorwegian Eastern Segment. We also provide the first unequivocal evidence for ductile deformation related to late-Sveconorwegian magmatism.
Keywords:Author Keywords: Sveconorwegian  Migmatite  Leucosome  Ion probe  Zircon  Baltic Shield
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号