首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical investigation of Archaean Bimodal and Dwalile metamorphic suites,Ancient Gneiss Complex,Swaziland
Authors:DR Hunter  F Barker  HT Millard
Institution:1. Department of Geology and Mineralogy, University of Natal, Pietermaritzburg, 3200, Natal South Africa;7. U.S. Geological Survey, Branch of Alaskan Geology, 4200 University Drive, Anchorage, AK 99508-4667 U.S.A.;71. U.S. Geological Survey, Federal Center, Denver, Colorado, 80225 U.S.A.
Abstract:The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 < 73%, Al2O3 > 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ~ 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (~ 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20–30 times chondrite.The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns.The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号