首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Depth of emplacement, fluid provenance and metallogeny in granitic terranes: a comparison of western Thailand with other tin belts
Authors:R L Linnen
Institution:Bayerisches Geoinstitut, Universit?t Bayreuth, 95440 Bayreuth, Germany, DE
Abstract:The most important tin mineralization in Thailand is associated with the Late Cretaceous to Middle Tertiary western Thai granite belt. A variety of deposit types are present, in particular pegmatite, vein and greisen styles of mineralization. A feature common to most of the deposits is that they are associated with granites that were emplaced into the Khang Krachan Group, which consists of poorly sorted, carbonaceous, pelitic metasediments. Most of the deposits contain low to moderately saline aqueous fluid inclusions and aqueous-carbonic inclusions with variable CH4/CO2 ratios. Low salinity aqueous inclusions represent trapped magmatic fluid in at least one case, the Nong Sua pegmatite, based on their occurrence as primary inclusions in magmatic garnet. Aqueous-carbonic inclusions are commonly secondary and neither the CO2 nor NaCl contents of these inclusions decrease in progressively younger inclusions, implying that they are not magmatic in origin. Reduced carbon is depleted in the metasediments adjacent to granites and the δD values greisen muscovites are variable, but are as low as −134 per mil, indicative of fluid interaction with organic (graphitic) material. This suggests that the aqueous-carbonic fluid inclusions represent fluids that were produced, at least in part, during contact metamorphism-metasomatism. By comparing the western Thai belt with other Sn-W provinces it is evident that there is a strong correlation between fluid composition and pressure in general. Low to moderately saline aqueous inclusions and aqueous-carbonic inclusions are characteristic of mineralization associated with relatively deep plutonic belts. Mineralized pegmatites are also typically of deeper plutonic belts, and pegmatite-hosted deposits may contain cassiterite that is magmatic (crystallized from granitic melt) or is orthomagmatic-hydrothermal (crystallized from aqueous or aqueous-carbonic fluids) in origin. The magmatic aqueous fluids (those that were exsolved from granitic melts) are interpreted to have had low salinities. As a consequence of the low salinities, tin is partitioned in favour of the melt on vapour saturation. Thus with a high enough degree of fractionation, the crystallization of a magmatic cassiterite (or different Sn phase such as wodginite) is inevitable. Because tin is not partitioned in favour of the vapour phase upon water saturation of the granitic melts, it is proposed that relatively deep vein and greisen systems tend to form by remobilization processes. In addition, many deeper greisen systems are hosted, in part, by carbonaceous pelitic metasediments and the reduced nature of the metasediments may play a key role in remobilizing tin. Sub-volcanic systems by contrast are characterized by high temperature-high salinity fluids. Owing to the high chlorinity, tin is strongly partitioned in favour of the vapour and cassiterite mineralization can form by of orthomagmatic-hydrothermal processes. Similar relationships between the depth of emplacement and fluid composition also appear to apply to other types of granite-hosted deposits, such as different types of molybdenum deposits. Received: 8 September 1997 / Accepted: 28 October 1997
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号