首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitivity of tropical cyclone intensification to boundary layer and convective processes
Authors:D V Bhaskar Rao  Dasari Hari Prasad
Institution:(1) Department of Meteorology and Oceanography, Andhra University, Visakhapatnam, 530003, India
Abstract:This study examines the role of the parameterization of convection, planetary boundary layer (PBL) and explicit moisture processes on tropical cyclone intensification. A high-resolution mesoscale model, National Center for Atmospheric Research (NCAR) model MM5, with two interactive nested domains at resolutions 90 km and 30 km was used to simulate the Orissa Super cyclone, the most intense Indian cyclone of the past century. The initial fields and time-varying boundary variables and sea surface temperatures were taken from the National Centers for Environmental Prediction (NCEP) (FNL) one-degree data set. Three categories of sensitivity experiments were conducted to examine the various schemes of PBL, convection and explicit moisture processes. The results show that the PBL processes play crucial roles in determining the intensity of the cyclone and that the scheme of Mellor-Yamada (MY) produces the strongest cyclone. The combination of the parameterization schemes of MY for planetary boundary layer, Kain-Fritsch2 for convection and Mixed-Phase for explicit moisture produced the best simulation in terms of intensity and track. The simulated cyclone produced a minimum sea level pressure of 930 hPa and a maximum wind of 65 m s−1 as well as all of the characteristics of a mature tropical cyclone with an eye and eye-wall along with a warm core structure. The model-simulated precipitation intensity and distribution were in good agreement with the observations. The ensemble mean of all 12 experiments produced reasonable intensity and the best track.
Keywords:Parameterization schemes  Planetary boundary layer processes  Simulation model  Tropical cyclone intensification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号