首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean
Authors:Krishna K Osuri  U C Mohanty  A Routray  Makarand A Kulkarni  M Mohapatra
Institution:1. Indian Institute of Technology, Centre for Atmospheric Sciences, Hauz Khas, New Delhi, 110016, India
2. National Centre for Medium Range Weather Forecasting, A-50, Institutional Area, Sector-62, Noida, UP, India
3. India Meteorological Department, Lodi Road, New Delhi, India
Abstract:The convection and planetary boundary layer (PBL) processes play significant role in the genesis and intensification of tropical cyclones (TCs). Several convection and PBL parameterization schemes incorporate these processes in the numerical weather prediction models. Therefore, a systematic intercomparison of performance of parameterization schemes is essential to customize a model. In this context, six combinations of physical parameterization schemes (2 PBL Schemes, YSU and MYJ, and 3 convection schemes, KF, BM, and GD) of WRF-ARW model are employed to obtain the optimum combination for the prediction of TCs over North Indian Ocean. Five cyclones are studied for sensitivity experiments and the out-coming combination is tested on real-time prediction of TCs during 2008. The tracks are also compared with those provided by the operational centers like NCEP, ECMWF, UKMO, NCMRWF, and IMD. It is found that the combination of YSU PBL scheme with KF convection scheme (YKF) provides a better prediction of intensity, track, and rainfall consistently. The average RMSE of intensity (13?hPa in CSLP and 11?m?s?1 in 10-m wind), mean track, and landfall errors is found to be least with YKF combination. The equitable threat score (ETS) of YKF combination is more than 0.2 for the prediction of 24-h accumulated rainfall up to 125?mm. The vertical structural characteristics of cyclone inner core also recommend the YKF combination for Indian seas cyclones. In the real-time prediction of 2008 TCs, the 72-, 48-, and 24-h mean track errors are 172, 129, and 155?km and the mean landfall errors are 125, 73, and 66?km, respectively. Compared with the track of leading operational agencies, the WRF model is competing in 24?h (116?km error) and 72?h (166?km) but superior in 48-h (119?km) track forecast.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号