首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高能级强夯法处理深厚吹填砂土地基现场试验
引用本文:苏亮,时伟,水伟厚,曹建萌.高能级强夯法处理深厚吹填砂土地基现场试验[J].吉林大学学报(地球科学版),2021,51(5):1560-1569.
作者姓名:苏亮  时伟  水伟厚  曹建萌
作者单位:1. 青岛理工大学土木工程学院, 山东 青岛 266033;2. 大地巨人(北京)工程科技有限公司, 北京 100176;3. 中铁建工集团有限公司, 北京 100160
基金项目:国家自然科学基金青年基金项目(41702320);山东省高等学校科技计划项目(J17KA204);山东省泰山学者专项基金项目(2015-212)
摘    要:沿海吹填砂土地基地下水位较高、常含软土夹层,地基处理难度大。为了研究高能级强夯在这类吹填砂土地基上的加固效果,在山东沿海某吹填砂土场地开展6 000和8 000 kN·m能级强夯加固试验。试验结束后分别运用标准贯入试验、静力触探试验、平板载荷试验进行现场检测。通过对比分析了设计要求深度范围内标准贯入试验和静力触探试验,发现夯前夯后标准贯入试验击数和静力触探锥尖试验阻力均明显提升,有效消除了饱和砂土和饱和粉土的液化势;通过平板载荷试验p-s曲线及夯后静力触探锥尖阻力标准值与承载力特征值的关系式,得到夯后砂土地基承载力特征值≥120 kPa,验证了高能级强夯方案的可行性。其次,对软土夹层位置和地下水位高度展开研究,发现软土层会阻碍夯击能传递,减小强夯有效加固深度,且软土层位置不同对强夯加固效果影响程度不同,强夯影响临界范围处存在软土层时,有效加固深度为软土层顶部位置处;对砂土地基进行4 000 kN·m能级强夯试验时,发现未降水强夯后有效加固深度为5 m,降水至地面以下3 m强夯后有效加固深度达到了7 m,提高了加固效果。在高能级强夯研究基础上,对现场吹填砂土地基进行了75万m2的大面积高能级强夯施工,发现处理后地基能够满足建筑用地要求。

关 键 词:吹填砂土地基  高能级强夯  标准贯入试验  静力触探试验  平板载荷试验  
收稿时间:2020-12-08

Field Test of High Energy Dynamic Compaction on Hydraulic Sandy Filling
Su Liang,Shi Wei,Shui Weihou,Cao Jianmeng.Field Test of High Energy Dynamic Compaction on Hydraulic Sandy Filling[J].Journal of Jilin Unviersity:Earth Science Edition,2021,51(5):1560-1569.
Authors:Su Liang  Shi Wei  Shui Weihou  Cao Jianmeng
Institution:1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China;2. Dadi Giant Engineering Technology Co., Ltd., Beijing 100176, China;3. China Railway Construction Engineering Co., Ltd., Beijing 100160, China
Abstract:During coastal blowing and filling of sandy soil foundation, high water table levels and soft interlayers are often encountered, which results in the difficulty to reinforce the ground. In order to study the reinforcement effect of high energy dynamic compaction on this type of soil, a field test of high energy dynamic compaction with 6 000 kN·m and 8 000 kN·m energy levels on a blow-filled sandy soil along the coast of Shandong was conducted. After the test, standard penetration test,static cone penetration test and plate loading test were used for on-site inspection. Through analyzing, the number of SPT strokes and the tip resistance of CPT were significantly increased in the depth range required by the design before and after the dynamic compaction, indicating that high energy dynamic compaction is very effective in eliminating the liquefaction potential of saturated sand and saturated chalk soil. Through the PLT p-s curve and the relationship formula of the tip resistance standard value and the bearing capacity characteristic value, the bearing capacity characteristic value ≥ 120 kPa after dynamic compaction was obtained, proved the feasibility of the high energy dynamic scheme. The impacts of the position of the soft soil interlayer and the height of the water table were studied; And it was found that the soft soil layer impeded the transfer of the dynamic energy and reduced the effective reinforcement depth of dynamic compaction, and the different position of the soft soil layer had different influence on the effect of dynamic compaction:When there was a soft soil layer at the critical area affected by dynamic compaction, the effective reinforcement depth was at the top of the soft soil layer. In the field test of high energy dynamic compaction with 4 000 kN·m energy level, the effective reinforcement depth reached 5 m after dynamic compaction without precipitation; However, with the precipitation of 3 m below ground level, after dynamic compaction the effective reinforcement depth reached 7 m. On the basis of high energy level dynamic research,a high energy level ramming was carried out in a large area of 750 000 square meters, and it was found that the treated foundation met the requirements of the construction site.
Keywords:hydraulic sandy fill  high energy level dynamic compaction  standard penetration test  static cone penetration test  plate loading test  
本文献已被 万方数据 等数据库收录!
点击此处可从《吉林大学学报(地球科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(地球科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号