首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Silver-Bearing and Associated Minerals in El Zancudo Deposit, Antioquia, Colombia
Authors:Alba Nury Gallego Hernández  Masahide Akasaka
Institution:Department of Geoscience, Graduate School of Science and Engineering, Shimane University, Matsue, Japan
Abstract:The occurrence and the chemical compositions of ore minerals (especially the silver‐bearing minerals) and fluid inclusions of the El Zancudo mine in Colombia were investigated in order to analyze the genetic processes of the ore minerals and to examine the genesis of the deposit. The El Zancudo mine is a silver–gold deposit located in the western flank of the Central Cordillera in Antioquia Department. It consists mainly of banded ore veins hosted in greenschist and lesser disseminated ore in porphyritic rocks. The ore deposit is associated with extensive hydrothermally altered zones. The ores from the banded veins contain sphalerite, pyrite, arsenopyrite, galena, Ag‐bearing sulfosalts, Pb‐Sb sulfosalts, and minor chalcopyrite, electrum, and native silver. Electrum is included within sphalerite, pyrite, and arsenopyrite, and is also partially surrounded by pyrite, arsenopyrite, sphalerite, and tetrahedrite. Native silver is present in minor amounts as small grains in contact with Ag‐rich sulfosalts. Silver‐bearing sulfosalts are argentian tetrahedrite–freibergite solid solution, andorite, miargyrite, diaphorite, and owyheeite. Pb‐Sb sulfosalts are bournonite, jamesonite, and boulangerite. Two main crystallization stages are recognized, based on textural relations and mineral assemblages. The first‐stage assemblage includes sphalerite, pyrite, arsenopyrite, galena and electrum. The second stage is divided into two sub‐stages. The first sub‐stage commenced with the deposition and growth of sphalerite, pyrite, and arsenopyrite. These minerals are characterized by compositional growth banding, and seem to have crystallized continuously until the end of the second sub‐stage. Tetrahedrite, Pb‐Cu sulfosalts, Ag‐Sb sulfosalt, and Pb‐Ag‐Sb sulfosalts crystallized from the final part of the first sub‐stage and during the whole second sub‐stage. However, one Pb‐Ag‐Sb sulfosalt, diaphorite, was formed by a retrograde reaction between galena and miargyrite. The minimum and maximum genetic temperatures estimated from the FeS content of sphalerite coexisting with pyrite and the silver content of electrum are 300°C and 420°C, respectively. These estimated genetic temperatures are similar to, but slightly higher than the homogenization temperatures (235–350°C) of primary fluid inclusions in quartz. The presence of muscovite in the altered host rocks and gangue suggest that the pH of the hydrothermal solutions was close to neutral. Most of the sulfosalts in this deposit have previously been attributed as the products of epithermal mineralization. However, El Zancudo can be classified as a xenothermal deposit, in view of the low pressure and high temperature genetic conditions identified in the present study, based on the mineralogy of sulfosalts and the homogenization temperatures of the fluid inclusions.
Keywords:Ag-bearing minerals  Colombia  El Zancudo deposit  fluid inclusion  silver-gold deposit  xenothermal deposit
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号