首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Recognition of the 1811–1812 New Madrid earthquakes in Reelfoot Lake, Tennessee sediments using pollen data
Authors:June E Mirecki
Institution:(1) Department of Geology, University of Charleston, 29424 Charleston, SC, USA
Abstract:Reelfoot Lake is located within the New Madrid Seismic Zone, a region characterized by ongoing seismic activity and the locus of a series of large earthquakes (m b >7) during 1811–1812. Coseismic uplift and subsidence from the 1811–1812 events formed the lake basin from a partially inundated alluvial bottomland forest. Lithologic, chronologic, and palynologic data from a vibracore are used here to characterize the 1811–1812 earthquake record in lacustrine sediments. The stratigraphic record consists of a poorly consolidated upper silt, an intervening 10-cm sand layer, overlying a compact lower silt. Calibrated radiocarbon age estimates on wood samples from both silt units indicate deposition during historical time (1490–1890 AD).Better age estimates were obtained by correlating pollen assemblage data from the upper and lower silt with the historical record of land-use change in the Reelfoot Lake region. Two factors resulted in changing plant distributions (and hence pollen assemblages) in Reelfoot Lake sediments: 1) altered drainage patterns of Reelfoot Creek and Bayou de Chien resulting from 1811–1812 uplift and subsidence, and 2) deforestation and subsequent cultivation beginning approximately 1850 AD. The upper silt is characterized by a oak/cedar arboreal pollen (AP) assemblage, showing a mixture of upland and alluvial bottomland AP influx from the region to the open lake basin. Non-arboreal pollen (NAP) in the upper silt shows increasing abundance of Composites, particularly ragweed pollen indicating cultivation. This unit was deposited after the 1811–1812 earthquakes. The intervening sand layer was apparently emplaced by earthquake activity, or represents colluvium derived from most recent (1811–1812) coseismic uplift of Reelfoot scarp, which forms the western margin of the lake. The lower silt is characterized by a baldcypress/cedar AP assemblage with minor percentages of other flood-tolerant AP genera, interpreted as a baldcypress-dominated bottomland forest. Pollen influx in this environment is dominated by gravity-component deposition from local sources. The NAP in the lower silt shows that ragweed is rare or absent, suggesting pre-settlement conditions and deposition prior to 1811–1812.This is the 15th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.
Keywords:earthquakes  Mississippi Valley  land-use change  pollen
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号