首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamical rupture process on a three-dimensional fault with non-uniform frictions and near-field seismic waves
Authors:Takeshi Mikumo  Takashi Miyatake
Institution:Disaster prevention Research Institute, Kyoto University, Uji, Kyoto, Japan
Abstract:Summary. Dynamical rupture process on the fault is investigated in a quasi-three-dimensional faulting model with non-uniform distributions of static frictions or the fracture strength under a finite shearing pre-stress. The displacement and stress time functions on the fault are obtained by solving numerically the equations of motion with a finite stress—fracture criterion, using the finite difference method.
If static frictions are homogeneous or weakly non-uniform, the rupture propagates nearly elliptically with a velocity close to that of P waves along the direction of pre-stress and with a nearly S wave velocity in the direction perpendicular to it. The rise time of the source function and the final displacements are larger around the centre of the fault. In the case when the static frictions are heavily non-uniform and depend on the location, the rupture propagation becomes quite irregular with appreciably decreased velocities, indicating remarkable stick-slip phenomena. In some cases, there remain unruptured regions where fault slip does not take place, and high stresses remain concentrated up to the final stage. These regions could be the source of aftershocks at a next stage.
The stick—slip faulting and irregular rupture propagation radiate high-frequency seismic waves, and the near-field spectral amplitudes tend to show an inversely linear frequency dependence over high frequencies for heavily non-uniform frictional faults.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号