首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The relationship between basin and margin thermal evolution assessed by fission track thermochronology: an application to offshore southern Norway
Authors:MAX Rohrman  PAUL Andriessen  PETER van der  Beek
Institution:Faculty of Earth Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Abstract:Abstract We use a quantitative model of apatite fission track (AFT) annealing to constrain the thermal evolution of a sedimentary basin and its margin. Apatites deposited in a basin contain several types of information. Provided temperatures remained below ?70°C, they retain much of their provenance thermal signatures and mainly record the thermal evolution of their source area. Above 70°C, the fission tracks in apatite rapidly fade, reflecting the thermal evolution of the basin. Therefore, downhole AFT dates in a well section can in principle be used to assess both the provenance detail (from shallow/cool samples) and the subsequent thermal history in the basin (from the deeper samples). We apply this concept to the south Norwegian offshore and onshore using AFT and ZFT (zircon fission track) data; the latter constrain maximum palaeotemperatures and provide additional provenance information. AFT and ZFT data from three offshore wells in the northern North Sea are shown to contain a record of palaeogeographical and tectonic evolution, closely associated with the Norwegian basement. ZFT data from Middle Triassic sediments suggest a Permian volcanic source. Modelling of AFT data from Jurassic sediments presently residing at temperatures below 70°C indicate rapid cooling during the Late Triassic to Early Jurassic, similar to onshore AFT data. During the Cretaceous minor sediment supply was derived from the Norwegian basement, as evidenced by ZFT ages that do not correlate to the onshore, suggesting that parts of southern Norway were covered with sediments at this time. At the end of the Palaeogene and during the Neogene, the south Norwegian basement again became a major source of elastics. AFT and ZFT data indicate that all wells are presently at maximum temperatures. No significant (> 500 m) erosion events are indicated in the three wells since the Jurassic. AFT data have not yet effectively equilibrated to present-day temperatures as nonzero fission track ages are maintained in sediments currently at temperatures of > 120°C. This implies that the present-day thermal regime has only recently been installed. Probable causes include rapid subsidence and an increase in the geothermal gradient during the last 5 Myr.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号