首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Roll-back controlled vertical movements of outer-arc basins of the Hellenic subduction zone (Crete, Greece)
Authors:ten Veen  & Postma
Institution:Faculty of Earth Sciences, Department of Geology, Utrecht University, Budapestlaan 4, PO Box 80021 3508 TA Utrecht, The Netherlands
Abstract:Crustal thickening north of the Hellenic subduction zone continued in the most external zones (e.g. Crete) probably until the late middle Miocene. The following period of predominant extension has been related by various workers to a number of causes such as: (1) trench retreat (roll back) driven by the pull of the African slab and (2) gravitational body forces associated with the thickened crust, both in combination with NNE motion of the African plate combined with westward extrusion of the Anatolian block along the North Anatolian Fault. To verify these hypotheses an inventory of fault orientations and fault-block kinematics was carried out for central and eastern Crete and adjoining offshore areas by combining satellite imagery, digital terrain models, and structural, seismic, sedimentary and stratigraphical field data, all set up in a GIS. The GIS data set enabled easy visualization and combination of data, which resulted in a relatively objective analysis. The geological results are discussed in the light of a numerical model that investigated the intraplate stresses resulting from the above mentioned forces. Our tectonostratigraphic results for the late Neogene of central and eastern Crete show three episodes of basin extension following a period of approximately N–S compression. In the earliest Tortonian, N130E- to N100E-trending normal faults developed, resulting in a roughly planar, arc-parallel fault system aligning strongly asymmetric half-grabens. The early Tortonian to early Messinian period was characterized by an orthogonal fault system of N100E and N020E faults resulting in rectangular grabens and half-grabens. From the late Tortonian to early Pleistocene, deformation occurred along a pattern of closely spaced, left-lateral oblique N075E faults, orientated parallel to the south Cretan trenches. Deformation phases younger than early Pleistocene are dominated by normal to oblique faulting along WSW–ENE (N050E) faults and dextral, oblique motions along NNW–SSE (N160E) faults. Many faults that were generated during previous deformational episodes appear to be reactivated in later periods. Our tectonostratigraphy points to a three step anticlockwise rotation of active fault systems since the late middle Miocene compressional phase. We suggest here that the rotation is associated with a reorganization of the stress field going from SSW–NNE tension in the early late Miocene to NE–SW left-lateral shear in the Quaternary. The rotation is likely to be a response to arc-normal pull forces combined with a progressive increase of the curvature of the arc. During the Pliocene to Recent period, the SSW-ward retreat of the arc and trench system relative to the African plate was accomplished by transform motions in the eastern (Levantine) segment of the Hellenic Arc, resulting in, respectively, NNW–SSE and NE–SW left-lateral shear on Crete.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号