首页 | 本学科首页   官方微博 | 高级检索  
     检索      

分子筛/石墨烯复合电极材料电化学性能的对比研究
引用本文:赵晓婵,房艳,周永全,戈海文,刘红艳,张文倩.分子筛/石墨烯复合电极材料电化学性能的对比研究[J].盐湖研究,2017,25(4):79-86.
作者姓名:赵晓婵  房艳  周永全  戈海文  刘红艳  张文倩
作者单位:中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008;中国科学院大学,北京 100049,中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008,中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008,中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008,中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008,中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008,中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008,中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室, 青海 西宁 810008;青海省盐湖资源与化学重点实验室,青海 西宁 810008;中国科学院大学,北京 100049
基金项目:中国科学院知识创新工程重要方向项目(KZCX2-EW-307)
摘    要:利用溶液共混法制备得到分子筛/石墨烯(RGO)复合电极材料。比较了分子筛(4A、13X、SBA-15)种类、煅烧温度以及分子筛与氧化石墨烯(GO)质量比等因素,对分子筛/RGO复合电极材料电化学性能的影响。采用X射线衍射(XRD)、孔径分析、扫描电镜(SEM)和电化学测试等分析方法考察了3种复合电极材料的结构、形貌及电化学性能。结果表明,RGO可以将4A很好地包覆,且4A均匀镶嵌在RGO层间并阻止RGO团聚,形成了三维空间导电网络结构,13X、SBA-15并不能完全被RGO包裹,RGO层间团聚现象仍较严重,不能形成三维导电网络结构。当分子筛与RGO质量比为6∶1,煅烧温度为320°C时,在4 A/g电流密度下,4A/RGO复合电极材料的比电容为450 F/g,而相应的13X/RGO、SBA-15/RGO复合电极材料的比电容分别为195、43 F/g。4A/RGO复合电极材料优异的超级电容性能可归于4A与RGO之间较强的协同效应。

关 键 词:石墨烯  分子筛  超级电容器  协同效应
收稿时间:2016/9/24 0:00:00
修稿时间:2016/10/24 0:00:00

Molecular Sieve/Graphene Composite Electrode Materials of The Comparison of The Electrochemical Performance
zhaoxiaochan,fangyan,zhouyongquan,gehaiwen,liuhongyan and zhangwenqian.Molecular Sieve/Graphene Composite Electrode Materials of The Comparison of The Electrochemical Performance[J].Journal of Salt Lake Research,2017,25(4):79-86.
Authors:zhaoxiaochan  fangyan  zhouyongquan  gehaiwen  liuhongyan and zhangwenqian
Institution:Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China;University of the Chinese Academy of Sciences, Beijing,100049,China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China and Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining,810008,China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province,Xining,810008,China;University of the Chinese Academy of Sciences, Beijing,100049,China
Abstract:The composite electrode material of molecular sieve /RGO were prepared by solution blending method. Comparing with the type and calcination temperature of molecular sieves (4A, 13X, SBA-15), the mass ratio of molecular sieve /RGO, these factors had some influence on the electrochemical performance of molecular sieve/RGO composite electrode material. The structure, morphology and electrochemical property of three composite electrode materials had been investigated by X-ray diffraction (XRD), Pore analysis, Scanning Electron Microscope (SEM) and electrochemical measurements. The result shown that, RGO was well coated with 4A, 4A can interlace between RGO layers and prevent the layer stack of RGO, further forming a three-dimensional conductive network structure in three molecular sieve/RGO composite electrode materials. But 13X, SBA-15 cannot be completely wrapped by RGO and occurred the serious stack phenomenon between RGO layers, preventing the formation of the three-dimensional conductive network structure. The electrochemical performance of the composite material were got at the conditions of 6:1 mass ratio for molecular sieve and RGO, and the calcination temperature of 320 °C. In the above cases and the same 4 A/g current density, the 4A/RGO composite material has a specific capacitance of 450 F/g, while the corresponding 13X/RGO, SBA-15/RGO were 195, 43 F/g. The super capacitor performance of 4A/RGO were better than 13X/RGO, SBA-15/RGO, attributing the stronger synergy effect between 4A and RGO.
Keywords:Graphene  Molecular sieve  Supercapacitor  Synergy effect
本文献已被 CNKI 等数据库收录!
点击此处可从《盐湖研究》浏览原始摘要信息
点击此处可从《盐湖研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号