首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于盐湖资源的硝酸熔盐储能材料性能研究
引用本文:王敏,李锦丽,赵有璟,王怀有,钟远,张宏韬,杜宝强,武延泽.基于盐湖资源的硝酸熔盐储能材料性能研究[J].盐湖研究,2018,26(2):1-8.
作者姓名:王敏  李锦丽  赵有璟  王怀有  钟远  张宏韬  杜宝强  武延泽
作者单位:中国科学院青海盐湖研究所中国科学院盐湖资源综合高效利用重点实验室;青海省盐湖资源化学重点实验室;中国科学院大学
基金项目:中国科学院科技服务网络计划(KFJ-EW-STS-131);青海省科技厅重大科技专项计划项目(2017-GX-A3) DOI:10.12119/j.yhyj.201802001基于盐湖资源的硝酸熔盐储能材料性能研究王 敏1,2,李锦丽1,2,赵有璟1,2,王怀有1,2,钟远1,2, 张宏韬1,2,3,杜宝强1,2,3,武延泽1,2,3 (1.中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海 西宁 810008;2.青海省盐湖资源化学重点实验室,青海 西宁 810008;3.中国科学院大学,北京 100049)
摘    要:太阳能光热发电是可再生能源发展的主要方向。作为太阳能光热发电的核心技术,熔融盐以热容量大、粘度低、蒸汽压低、使用温度范围宽等诸多独特的性能优势,成为光热发电储能的首选。相比之下,硝酸熔盐具有优良的传热和流体流动等特性,使其在光热储热系统中的性能优势较为突出。我国盐湖地区具备太阳能光热发电的发展空间和优势,丰富的无机盐资源可以降低相关相变储能材料的生产成本,有利于推进太阳能的规模化发展、能源结构的调整优化。据此,立足于盐湖资源的开发利用,以硝酸盐系列传热蓄热介质的工业应用为背景,针对产业化的二元硝酸盐熔盐做了更深入的系统研究;在此基础上,通过添加硝酸镁,制备了低熔点的三元熔盐储能材料;并将碳纳米管引入到硝酸盐体系,进一步提升了其导热性能。这不仅为硝酸熔盐储热材料的制备提供了理论基础,也为其在光热发电的应用打开了更多的可能性。

关 键 词:硝酸盐  储能材料  太阳能  光热发电
收稿时间:2018/5/31 0:00:00

Preparation and Properties of Nitrate Molten Salts Energy Storage Materials Based on Salt Lake Resources
WANG Min,LI Jin-li,ZHAO You-jing,WANG Huai-you,ZHONG Yuan,ZHANG Hong-tao,DU Bao-qiang and WU Yan-ze.Preparation and Properties of Nitrate Molten Salts Energy Storage Materials Based on Salt Lake Resources[J].Journal of Salt Lake Research,2018,26(2):1-8.
Authors:WANG Min  LI Jin-li  ZHAO You-jing  WANG Huai-you  ZHONG Yuan  ZHANG Hong-tao  DU Bao-qiang and WU Yan-ze
Institution:Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China;University of Chinese Academy of Sciences, Beijing, 100049, China,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China;University of Chinese Academy of Sciences, Beijing, 100049, China and Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China;University of Chinese Academy of Sciences, Beijing, 100049, China
Abstract:Solar thermal power generation is the main direction of renewable energy development. As the core technology of solar power generation, molten salt possesses large heat capacity, low viscosity, low vapor pressure, wide use temperature range and many other unique performance advantages, being the top choice. Nitrate molten salt has excellent heat transfer and fluid flow characteristics, which make it more outstanding in the performance of thermal storage system. The salt lake area in China has the development space and advantage of solar photothermal power generation. Rich inorganic salt resources can reduce the production cost of phase change energy storage materials, which will be conducive to promoting the large-scale development of solar energy and the adjustment and optimization of energy structure. Based on the exploitation and utilization of salt lake resources, we have carried out systematic work. More thorough and systematic studies on the industrialization of binary nitric acid have been done. Then, ternary molten salt energy storage materials with low melting point were prepared by adding magnesium nitrate. The carbon nanotubes are introduced into the nitrate system for the first time, and the thermal conductivity is further improved thereof. This not only provides a theoretical basis for the preparation of nitrate molten salt thermal storage materials, but also opens up more possibilities for its application in photothermal power generation.
Keywords:Nitrates  Energy storage material  Solar energy  Photothermal power generation
本文献已被 CNKI 等数据库收录!
点击此处可从《盐湖研究》浏览原始摘要信息
点击此处可从《盐湖研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号