首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of solar radiation and the subsequent dark periods on two newly isolated and characterized Antarctic marine bacteria
Authors:Edgardo A Hernández  Gustavo A Ferreyra  Walter P Mac Cormack
Institution:E. Hernández, Laboratory of Industrial Microbiology and Biotechnology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956, 6th floor (C1113AAD), Buenos Aires, Argentina;G. A. Ferreyra &W. P. Mac Cormack, Argentinean Antarctic Institute, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina,
Abstract:Two strains of psychrotolerant Antarctic marine bacteria were isolated and characterized using biochemical and molecular techniques. Sequencing of 16S rRNA gene showed that UVvi strain belongs to the genus Arthrobacter whereas UVps strain is related to the Flexibacter-Cytophaga-Bacteroides (FCB) group. Response of the strains to solar radiation was studied during the summer of 1999 in Potter Cove, near Jubany station (South Shetland Island, Antarctica). The effect of photosynthetically available radiation (PAR, 400-700 nm), ultraviolet-A (UV-A, 320-400 nm) and ultraviolet-B radiation (UV-B, 280-320 nm) on cell viability was studied using mixed cultures in quartz bottles covered with interferential filters and exposed to solar radiation. In all experiments, four treatments were used: dark (with light screened out), PAR (with UV radiation screened out), PAR+UV-A (UV-B screened out) and PAR+UV-A+UV-B. Under the assayed conditions, PAR+UV-A and PAR+UV-A+UV-B radiation showed similar negative effects on the viability of the studied strains. However, at the end of the exposure time, mortality values in PAR+UV-A+UV-B treatments were higher than those observed under PAR+UV-A treatments. In both PAR+UV-A and PAR+UV-A+UV-B treatments we observed high levels of hydrogen peroxide compared with the dark control. The Arthrobacter UVvi strain showed significant recovery in dark conditions after exposure to the PAR+UV-A but not after the PAR+UV-A+UV-B treatment. This strain proved to be more resistant to UV radiation than the FCB group-related UVps strain. The results showed that UV radiation has a deleterious effect on these Antarctic marine bacteria and also revealed that the analysed components of the Antarctic bacterioplankton may have different responses when they are exposed to the same irradiance conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号