首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The isotropic organization of DEM structure and extraction of valley lines using hexagonal grid
Authors:Lu Wang  Tinghua Ai  Yilang Shen  Jingzhong Li
Abstract:The automatic extraction of valley lines (VLs) from digital elevation models (DEMs) has had a long history in the GIS and hydrology fields. The quality of the extracted results relies on the geometrical shape, spatial tessellation, and placement of the grids in the DEM structure. The traditional DEM structure consists of square grids with an eight‐neighborhood relationship, where there is an inconsistent distance measurement between orthogonal neighborhoods and diagonal neighborhoods. The directional difference results in the extracted VLs by the D8 algorithm not guaranteeing isotropy characteristics. Alternatively, hexagonal grids have been proved to be advantageous over square grids due to their consistent connectivity, isotropy of local neighborhoods, higher symmetry, increased compactness, and more. Considering the merits above, this study develops an approach to VL extraction from DEMs based on hexagonal grids. First, the pre‐process phase contains the depression filling, flow direction calculation, and flow accumulation calculation based on the six‐neighborhood relationship. Then, the flow arcs are connected, followed by estimating the flow direction. Finally, the connected paths are organized into a tree structure. To explore the effectiveness of hexagonal grids, comparative experiments are implemented against traditional DEMs with square grids using three sample regions. By analyzing the results between these two grid structures via visual and quantitative comparison, we conclude that the hexagonal grid structure has an outstanding ability in maintaining the location accuracy and bending characteristics of extracted valley networks. That is to say, the DEM‐derived VLs based on hexagonal grids have better spatial agreement with mapped river systems and lower shape diversion under the same resolution representation. Therefore, the DEMs with hexagonal grids can extract finer valley networks with the same data volume relative to traditional DEM.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号