首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assimilation of Earth rotation parameters into a global ocean model: length of day excitation
Authors:Jan Saynisch  Manfred Wenzel  Jens Schröter
Institution:(1) Kanalpromenade 3, 14513 Teltow, Germany
Abstract:Changes in the oceanic current system and in the oceanic mass distribution alter, together with other processes, the state of the Earth’s rotation. This state is characterized by the length of day (LOD) and the tilt of the pole-to-pole axis. The aim of our study was to derive the respective governing physical mechanisms in the ocean. Therefore, Earth rotation observations were assimilated into a global circulation model of the ocean. Although assimilation is a well-established tool in climate science, the assimilation of Earth rotation observations into a global ocean model was done here for the first time. Prior to the assimilation, the Earth rotation observations were projected onto the angular momentum of the ocean. Non-oceanic contributions were removed. The result of the subsequent assimilation procedure is a time varying ocean model state that reproduces the projected Earth rotation observations well. This solution was studied to understand the oceanic generation of Earth rotation deviations and to identify governing physical mechanisms. This paper focuses on LOD anomalies although polar motion was assimilated simultaneously. Our results indicate that changes in the oceanic LOD excitation are mostly attributed to changes in total ocean mass. Changes in the spatial distribution of ocean mass turned out to have a minor contribution to the LOD deviations. The same applies to changes in the current system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号