首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Global optimization of the Gauss conformal mappings of an ellipsoid to a sphere
Authors:Mercedes Bermejo-Solera  Jesús Otero
Institution:1. Departamento de Física, Centro Universitario de Mérida (Ingeniería Técnica en Topografía), Universidad de Extremadura, 06800, Mérida, Spain
2. Facultad de Matemáticas, Instituto de Astronomía y Geodesia (UCM-CSIC), Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040, Madrid, Spain
Abstract:The Gauss conformal mappings (GCMs) of an oblate ellipsoid of revolution to a sphere are those that transform the meridians into meridians, and the parallels into parallels of the sphere. The infinitesimal-scale function associated with these mappings depends on the geodetic latitude and contains three parameters, including the radius of the sphere. Gauss derived these constants by imposing local optimum conditions on certain parallel. We deal with the problem of finding the constants to minimize the Chebyshev or maximum norm of the logarithm of the infinitesimal-scale function on a given ellipsoidal segment (the region contained between two parallels). We show how to solve this minimax problem using the intrinsic function fminsearch of Matlab. For a particular ellipsoidal segment, we get the solution and show the alternation property characteristic of best Chebyshev approximations. For a pair of points relatively close in the ellipsoid at different latitudes, the best minimax GCM on the segment defined by these points is used to approximate the geodesic distance between them by the spherical distance between their projections on the corresponding sphere. This approach, combined with the best locally GCM if the points are on the same parallel, is illustrated by applying it to some case studies but specially to a 10° × 10° region contained between portions of two parallels and two meridians. In this case, the maximum absolute error of this spherical approximation is equal to 2.9 mm occurring at a distance about 1,360 km. This error decreases up to 0.94 mm on an 8° × 8° region of this type. So, the spherical approximation to the solution of the inverse geodesic problem by best GCM can be acceptable in many practical geodetic activities.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号