首页 | 本学科首页   官方微博 | 高级检索  
     检索      


GOCE gradiometer: estimation of biases and scale factors of all six individual accelerometers by precise orbit determination
Authors:P N A M Visser
Institution:(1) Delft Institute of Earth Observation and Space Systems (DEOS), Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
Abstract:A method has been implemented and tested for estimating bias and scale factor parameters for all six individual accelerometers that will fly on-board of GOCE and together form the so-called gradiometer. The method is based on inclusion of the individual accelerometer observations in precise orbit determinations, opposed to the baseline method where so-called common-mode accelerometer observations are used. The method was tested using simulated data from a detailed GOCE system simulator. It was found that the observations taken by individual accelerometers need to be corrected for (1) local satellite gravity gradient (SGG), and (2) rotational terms caused by centrifugal and angular accelerations, due to the fact that they are not located in the satellite’s center of mass. For these corrections, use is made of a reference gravity field model. In addition, the rotational terms are derived from on-board star tracker observations. With a perfect a priori gravity field model and with the estimation of not only accelerometer biases but also accelerometer drifts, scale factors can be determined with an accuracy and stability better than 0.01 for two of the three axes of each accelerometer, the exception being the axis pointing along the long axis of the satellite (more or less coinciding with the flight direction) for which the scale factor estimates are unreliable. This axis coincides with the axis of drag-free control, which results in a small variance of the signal to be calibrated and thus an inaccurate determination of its scale factor in the presence of relatively large (colored) accelerometer observation errors. In the presence of gravity field model errors, it was found that still an accuracy and stability of about 0.015 can be obtained for the accelerometer scale factors by simultaneously estimating empirical accelerations.
Keywords:Accelerometer  Accelerometer drift  Bias  Calibration  GOCE  Gradiometer  Precise orbit determination  Scale factor
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号