首页 | 本学科首页   官方微博 | 高级检索  
     检索      

GNSS-R DDM波形仿真的时延与多普勒间隔研究
引用本文:夏俊明,吴学睿,白伟华,孙越强,骆黎明,杜起飞,王先毅,柳聪亮,孟祥广,赵丹阳,王迎强.GNSS-R DDM波形仿真的时延与多普勒间隔研究[J].遥感学报,2019,23(3):456-463.
作者姓名:夏俊明  吴学睿  白伟华  孙越强  骆黎明  杜起飞  王先毅  柳聪亮  孟祥广  赵丹阳  王迎强
作者单位:中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190,中国科学院上海天文台, 上海 200030;中国科学院行星科学重点实验室, 上海 200030,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190;中国科学院大学天文学院, 北京 100190,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190;中国科学院大学天文学院, 北京 100190,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190;中国科学院大学天文学院, 北京 100190,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190,中国科学院国家空间科学中心空间环境探测研究室, 北京 100190;北京市天基空间环境探测重点实验室, 北京 100190,解放军理工大学气象学院, 南京 211101
基金项目:国家重点研发计划(编号:2017YFB0502800,2017YFB0502802);国家自然科学基金(编号:41606206,41405039,41405040,41505030,41501384)
摘    要:DDM波形是GNSS-R技术用于反演地球物理参量的基本观测量,其仿真结果的可靠性直接影响GNSS-R的理论研究及项目工程参数设计。利用GREEPS仿真软件分析了时延间隔与多普勒间隔对DDM波形仿真结果可靠性的影响,得到了用于获取可靠DDM仿真波形的时延与多普勒间隔参数。研究表明,时延和多普勒间隔越小,DDM仿真波形与理论波形吻合度越高;当时延间隔取1/16个GPS L1 C/A码元、多普勒间隔取50 Hz时,DDM仿真波形与理论波形几乎完全吻合,二者的相关系数大于0.99;时延间隔对DDM仿真波形峰值位置的影响远大于对峰值信噪比的影响;而多普勒间隔对DDM仿真波形峰值位置与信噪比的影响相当。

关 键 词:GNSS-R  时延—多普勒波形  时延间隔  多普勒间隔  GREEPS
收稿时间:2018/1/23 0:00:00

Research on the effects of delay and Doppler intervals on GNSS-R DDM simulation
XIA Junming,WU Xuerui,BAI Weihu,SUN Yueqiang,LUO Liming,DU Qifei,WANG Xianyi,LIU Congliang,MENG Xiangguang,ZHAO Danyang and WANG Yingqiang.Research on the effects of delay and Doppler intervals on GNSS-R DDM simulation[J].Journal of Remote Sensing,2019,23(3):456-463.
Authors:XIA Junming  WU Xuerui  BAI Weihu  SUN Yueqiang  LUO Liming  DU Qifei  WANG Xianyi  LIU Congliang  MENG Xiangguang  ZHAO Danyang and WANG Yingqiang
Institution:National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China,Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;Key laboratory of Planetary Sciences, Chinese Academy of Sciences, Shanghai 200030, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China;School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100190, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China;School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100190, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China;School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100190, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China,National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China and College of Meteorology and Oceanology, National University of Defense Technology, Nanjing 211101, China
Abstract:Global Navigation Satellite System Reflectometry (GNSS-R) uses GNSS signals reflected by the Earth''s surface to detect the Earth surface parameters, including sea surface wind field, sea surface height, soil moisture, sea ice range, and snow depth. GNSS-R is a new Earth remote sensing technology, and it has been a research focus in recent years. Delay-Doppler Mapping (DDM) is a significant GNSS-R observation for retrieving geophysical parameters. The reliability of GNSS-R DDM simulation results directly affects GNSS-R theoretical research and satellite mission engineering parametric design. In this thesis, the effects of delay and Doppler intervals on a simulated DDM is investigated, and the suitable parameters for both intervals is determined to generate a reliable DDM simulation result.
GREEPS, which was a GNSS-R simulator based on Z-V models and was developed by the National Space Science Center of the Chinese Academy of Sciences, is currently used to simulate DDM waveforms with different delay and Doppler intervals. To evaluate the accuracy of the simulated DDM waveforms, the 1D delay mapping with 0 Hz Doppler and the peak''s signal-to-noise ratio (SNR) and position of the simulated DDM are compared with theoretical ones.
The results shows that the smaller the delay and Doppler intervals are, the higher the correlation coefficient of the simulated DDM waveform and the theoretical waveform will be. When the delay interval is less than 1/16 GPS L1 C/A code chips, the correlation coefficient of the simulated DDM waveform and the theoretical waveform is greater than 0.99. The relative deviation of the peak SNR of the simulated DDM waveform is approximately 0.1% when the delay interval is set to be 1/16 GPS L1 C/A code chips. However, the relative deviation of the peak position of the simulated DDM waveform is extremely high. Even if the delay interval is set to be 1/64 GPS L1 C/A code chips, the relative deviation of the peak position of the simulated DDM is just 2.3%. When the Doppler interval is less than 200 Hz, the correlation coefficient of the simulated DDM waveform and the theoretical waveform is close to 1. When the Doppler interval is less than 50 Hz, the relative deviation of the peak SNR and the peak position is less than 0.1%.
It is can be concluded that the smaller the delay and Doppler intervals are, the higher the coincidence degree of the simulated DDM and the theoretical DDM will be. When the delay interval and the Doppler interval are set to be 1/16 GPS L1 C/A code chips and 50 Hz, respectively, the simulated waveforms and the theoretical waveforms highly coincide with one another. The correlation coefficient is more than 0.99, and the relative deviation of the peak SNR of DDM is less than 0.1%. The effect of the delay interval on the peak''s position of DDM is greater than that of the Doppler interval. The relative deviation of the position of the peak SNR is greater than 2% even if the delay interval is set to 1/64 GPS L1 C/A code chips.
Keywords:GNSS-R  delay-Doppler mapping  delay interval  Doppler interval  GREEPS
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号