首页 | 本学科首页   官方微博 | 高级检索  
     检索      

风云三号C星微波成像仪升降轨偏差问题分析及订正
引用本文:张淼,陆其峰,谷松岩,胡秀清,武胜利.风云三号C星微波成像仪升降轨偏差问题分析及订正[J].遥感学报,2019,23(5):841-849.
作者姓名:张淼  陆其峰  谷松岩  胡秀清  武胜利
作者单位:中国气象局中国遥感卫星辐射测量和定标重点开放实验室 国家卫星气象中心, 北京 100081,中国气象局中国遥感卫星辐射测量和定标重点开放实验室 国家卫星气象中心, 北京 100081,中国气象局中国遥感卫星辐射测量和定标重点开放实验室 国家卫星气象中心, 北京 100081,中国气象局中国遥感卫星辐射测量和定标重点开放实验室 国家卫星气象中心, 北京 100081,中国气象局中国遥感卫星辐射测量和定标重点开放实验室 国家卫星气象中心, 北京 100081
基金项目:国家重点研发计划(编号:2018YFB0504900,2018YFB0504902);气象行业专项(编号:GYHY201206002);“万人计划”领军人才(编号:187)
摘    要:风云三号(FY-3)的微波成像仪(MWRI)能够全天候获取全球大气水汽含量、云雨参数及海面温度等的空间分布,并可为数值天气预报提供初始场信息进而提高天气预报的准确性。但FY-3C MWRI O-B(O是卫星观测亮温,B是数值天气预报模式模拟亮温)偏差结果存在较大升降轨差异,严重制约了遥感信息的正确提取以及在数值天气预报模式中的业务同化应用。本文通过分析定标方程各参数:定标黑体物理温度、热反射镜背瓣亮温、热反射镜物理温度、冷空反射镜物理温度、接收通道温度、黑体观测计数值、冷空观测计数值、定标斜率、定标截距,并对定标方程各项进行敏感性分析,找出了引起MWRI升降轨偏差的主要原因是热反射镜的发射率异常增大引起的。经过不断调整MWRI的热反射镜发射率,使升轨O-B与降轨O-B的概率分布逐渐重合,初步估算了热反射镜发射率。本文的订正方法可指导未来仪器的发展,并为直接同化MWRI辐射数据提供了条件。

关 键 词:遥感  风云三号(FY-3)  微波成像仪  定标  升降轨偏差
收稿时间:2018/6/8 0:00:00

Analysis and correction of the difference between the ascending and descending orbits of the FY-3C microwave imager
ZHANG Miao,LU Qifeng,GU Songyan,HU Xiuqing and WU Shengli.Analysis and correction of the difference between the ascending and descending orbits of the FY-3C microwave imager[J].Journal of Remote Sensing,2019,23(5):841-849.
Authors:ZHANG Miao  LU Qifeng  GU Songyan  HU Xiuqing and WU Shengli
Institution:Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration (LRCVES/CMA) and National Satellite Meteorological Center, Beijing 100081, China,Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration (LRCVES/CMA) and National Satellite Meteorological Center, Beijing 100081, China,Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration (LRCVES/CMA) and National Satellite Meteorological Center, Beijing 100081, China,Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration (LRCVES/CMA) and National Satellite Meteorological Center, Beijing 100081, China and Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration (LRCVES/CMA) and National Satellite Meteorological Center, Beijing 100081, China
Abstract:The Microwave Radiometer Imager (MWRI) onboard FY-3C satellites was successfully launched on December 23, 2013. MWRI observes the Earth''s atmosphere and surface at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with dual polarization and can provide an important initial field for Numerical Weather Prediction (NWP). However, the O-B (observation minus simulation) of MWRI shows a clear bias difference between ascending and descending orbits. The magnitude of this ascending-descending bias is approximately 2 K for all channels, thereby restricting its operational application in NWP data assimilation systems. This research analyzes the causes of the bias and makes appropriate corrections.
The parameters of the calibration equation were analyzed, including physical temperature of the warm load, brightness temperature of the hot reflector''s back-lobe, physical temperature of the hot reflector, physical temperature of the cold reflector, receiver channel instrument temperature, warm load radiometric counts, cold space radiometric counts, antenna brightness temperature calibration scale, antenna brightness temperature calibration offset, and a sensitivity analysis of each term of the calibration equation was conducted. Results indicated that high values of the hot load reflector are the main causes of the bias. The reflector was heated periodically by incident solar radiation and emitted a variable radiation with space and time, which caused the ascending-descending bias. Thus, the brightness temperature was simulated using the basic atmospheric parameters of ERA5 in conjunction with the radiative transfer model known as RTTOV. With the principle that the probability density difference between the O-B of ascending and descending orbits is minimum, the emissivity of the hot load reflector is estimated.
Results show that before adjusting the emissivity of the hot reflector, the probability density plot of the O-B of ascending and descending orbits was separated. After correction, the bias difference between the ascending and descending orbits were clearly reduced, thereby identifying the main error source of the ascending-descending bias. Such identification can guide the development of future instruments and provide the condition for direct assimilation of MWRI radiance data.
Although the accuracy of NWP fields, the radiative transfer model, calibration, and cloud detection are not the main error source of the ascending-descending bias, they may affect the estimation accuracy of the emissivity of the hot load reflector. Thus, strict quality control should be carried out in the future, and after the samples of greater uncertainty are eliminated, more accurate on-orbit emissivity of the hot load reflector can be estimated.
Keywords:remote sensing  FY-3C  microwave imager  calibration  difference between the ascending and descending orbits
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号