首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Retrieving multi-scale climatic variations from high dimensional time-series MODIS green vegetation cover in a tropical/subtropical mountainous island
Authors:Chung-te Chang  Hsueh-ching Wang  Cho-ying Huang
Institution:1. Department of Geography, National Taiwan University, No 1 Sec. 4, Roosevelt Road, Taipei, 10617, Chinese Taipei
Abstract:There are knowledge gaps in our understanding of vegetation responses to multi-scale climate-related variables in tropical/subtropical mountainous islands in the Asia-Pacific region.Therefore, this study investigated inter-annual vegetation dynamics and regular/irregular climate patterns in Taiwan. We applied principal component analysis(PCA) on 11 years(2001~2011) of highdimensional monthly photosynthetically active vegetation cover(PV) derived from the Moderate Resolution Imaging Spectroradiometer(MODIS) and investigated the relationships between spatiotemporal patterns of the eigenvectors and loadings of each component through time and multi-scale climaterelated variations. Results showed that the first five components contributed to 96.4% of the total variance. The first component(PC1, explaining 94.5%of variance) loadings, as expected, were significantly correlated with the temporal dynamics of the PV(r =0.94), which was mainly governed by regional climate The temporal loadings of PC2 and PC3(0.8% and0.6% of variance, respectively) were significantly correlated with the temporal dynamics of the PV of forests(r = 0.72) and the farmlands(r = 0.80),respectively. The low-order components(PC4 and PC5, 0.3% and 0.2% of variance, respectively) were closely related to the occurrence of drought(r = 0.49)and to irregular ENSO associated climate anomalies(r =-0.54), respectively. Pronounced correlations were also observed between PC5 and the Southern Oscillation Index(SOI) with one to three months of time lags(r =-0.35 ~-0.43, respectively), revealing biophysical memory effects on the time-series pattern of the vegetation through ENSO-related rainfall patterns. Our findings reveal that the sensitivity of the ecosystems in this tropical/subtropical mountainous island may not only be regulated by regional climate and human activities but also be susceptible to largescale climate anomalies which are crucial and comparable to previous large scale analyses. This study demonstrates that PCA can be an effective tool for analyzing seasonal and inter-annual variability of vegetation dynamics across this tropical/subtropical mountainous islandin the Pacific Ocean, which provides an opportunity to forecast the responses and feedbacks of terrestrial environments to future climate scenarios.
Keywords:Vegetation cover  Vegetation dynamics  Principal component analysis (PCA)  Regional climate  Standardized precipitation index (SPI)  Climatic anomaly  El Ni?o Southern Oscillation (ENSO)
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号