首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A coupled ice-ocean ecosystem model for 1-D and 3-D applications in the Bering and Chukchi Seas
Authors:Jin Meibing  Clara Deal  WANG Jia
Institution:1. International Arctic Research Center, University of Alaska Fairbanks, USA
2. Great Lakes Environmental Research Lab, NOAA, USA
Abstract:Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications.This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai), three zooplankton (copepods, large zooplankton, and microzooplankton: ZS, ZL, ZP), three nutrients (nitrate + nitrite, ammonium, silicon:NO3, NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.
Keywords:ecosystem model  sea ice  ocean  ice algae  phytoplankton
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号