首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Total Synthesis of Marine Cyclic Enol-Phosphotriester Salinipostin Compounds
Authors:ZHAO Mingliang  WEI Xianfeng  LIU Xuemeng  DONG Xueyang  YU Rilei  WAN Shengbiao  JIANG Tao
Abstract:Due to their structural diversity and variety of biological activities, marine natural products have been the subject of extensive study. These compounds, especially phospholipid polycyclic aromatic hydrocarbons, have a wide range of pharmacological applications, including embedded DNA and central nervous system, anti-tumor, anti-virus, anti-parasite, anti-bacterial, and antithrombotic effects. Unfortunately, the insufficient drug sources have limited the development of these compounds. In this study, we isolated salinpostin compounds from a fermentation solution of marine-derived Salinospora sp., which has a common bicyclic enol-phosphotriester core framework, as well as potent and selective antimalarial activities against P. falciparum with EC_(50)=50 nmolL~(-1). The chemical synthesis of these compounds in greater quantities is necessary for their use in bioactivity studies. Thus we explored a short route with high yields and mild reaction conditions, which can generate combinatorial libraries for drug discovery and lead optimization. We developed a new total synthesis method for six cyclic enol-phosphotriester salinipotin compounds and their diastereomers. For the total synthesis of cyclipostin P, we prepared cyclic enol-phosphotriester salinipostin compounds in 10 steps from a readily accessible starting material, 1,3-dihydroxyacetone, and obtained an overall yield of 1.29%. We fully characterized these compounds by proton nuclear magnetic resonance(~1H-NMR), carbon-13 NMR(~(13)C-NMR), and high-resolution mass spectrometry(HRMS) analyses, and found they coincide absolutely with the same compounds reported previously.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号