首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New progress on the Fresnel imager for UV space astronomy
Authors:L Koechlin  M Yadallee  T Raksasataya  A Berdeu
Institution:1. IRAP, Université de Toulouse, CNRS, 14 avenue Edouard Belin, 31400, Toulouse, France
2. ISE, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
Abstract:We propose a next generation space instrument: the Fresnel imager, a large aperture and lightweight focusing device for UV astrophysics. This paper presents the laboratory setup used to validate the Fresnel imager at UV at wavelengths around 260 nm, and the results obtained. The validation of this optical concept in the visible domain has been previously published, with the first results on sky objects. In this paper we present new optical tests in the UV, of diffractive focusing and chromatic correction at wavelengths around 260 nm. The results show images free from chromatic aberration, thanks to a chromatic corrector scheme similar to the one used in the visible. To complete these tests and reach real astrophysical UV sources, we propose a short space mission featuring a Fresnel imager prototype placed on the international space station: during the mission this small aperture instrument would be aimed at UV sources such as bright stars and solar system objects, to assess at relatively low cost the limits in contrast and resolution of diffractive focusing in space conditions, on real UV astrophysical objects. At wavelengths from 100 to 300 nm, covering Lyman-α, we expect some scientific return from this mission, but the main goal is to increase the TRL, improving the chances of success for a later proposal featuring a full fledged Fresnel imager 10 meters in aperture or more, that would explore new domains of UV astrophysics at very high angular resolution and very high contrast.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号