首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ionospheric temperature and density measurements by means of spherical double probes
Authors:U Fahleson  C-G Fälthammar  A Pedersen
Institution:Department of Plasma Physics, Royal Institute of Technology, 100 44 Stockholm 70, Sweden;Space Science Department, ESTEC, Noordwijk, Holland Netherlands
Abstract:Rocket-borne double probes for electric field measurements can be intermittently operated in special, diagnostic modes involving current bias and low-impedance shunts to obtain information on the properties of the ambient ionospheric plasma along the flight path. Several such modes, and the information that they can provide, are analyzed. For example, in a low-impedance mode with asymmetric bias, the attenuation ratio (i.e. signal amplitude in this mode over the signal amplitude in the electric-field measuring mode) is in a simple way related to the electron temperature of the ambient plasma. The special surface coatings (Aquadag or vitreous carbon) normally used for electric field probes provide very homogeneous surface properties, a feature which also contributes to the reliability of the electron temperature measurements. In addition to electron temperature, the modes analyzed can be used to measure electron density and to give some information on ion temperature. The data from four rocket flights from ESRANGE are discussed in the light of these results. Electron temperature was measured in three of these flights. In all cases the temperature profile is in good agreement with theoretically predicted profiles based on the CIRA 1965 reference atmosphere and the solar illumination prevailing during the respective flights (twilight). Electron density profiles obtained by means of the double probe are in good agreement with the density measured by the Langmuir probe in the two flights for which both kinds of data are available. They are also in agreement with the electron density data available from ionosondes. Finally, pulses occurring when one of the probes passed through the rocket's shadow, are used to determine the photoelectron yield of the probe coatings (Aquadag or vitreous carbon). The values obtained, (7 ± 3) × 10?6 A/m2 for Aquadag and (4 ± 2) × 10?6 A/m2 for vitreous carbon are in good agreement with expectations based on laboratory data and solar Lyman α radiation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号