首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental simulation of Titan's atmosphere: Detection of ammonia and ethylene oxide
Authors:J -M Bernard  P Coll  A Coustenis  F Raulin
Institution:a Laboratoire Interuniversitaire des Systémes Atmosphériques, UMR CNRS 7583, Universités Paris 12 & Paris 7, CMC, 61 av. du Général de Gaulle 94010, Créteil Cedex, France;b LESIA—Observatoire de Paris-Meudon, 92195, Meudon Cedex, France
Abstract:For several years now, an experimental simulation of Titan's atmosphere has been on going at LISA. A cold plasma is established in a gas mixture representative of the atmosphere of the satellite. In these experiments, more than 70 organic compounds have been identified, including the first identification in this type of experimental simulation of C4N2 already detected in its solid form on Titan, which suggests that the setup correctly mimics the chemistry of Titan's atmosphere.We have carried out the first experimental simulation including O-containing compounds in order to study the influence of the presence of CO on the chemical behavior of Titan's atmosphere. With the help of gas chromatography–mass spectrometry (GC–MS) and infrared spectroscopy (IRS) we can thus determine which minor species still undetected in Titan's atmosphere are likely to be present and understand the complex chemistry of the atmosphere of this satellite. Surprisingly we have identified unpredicted O-containing gaseous compounds, mainly ethylene oxide (also named oxirane, C2H4O). This molecule has been observed in the interstellar medium by observation in the millimeter region (Astrophys. J. 489 (1997) 553; Astron. Astrophys. 337 (1998) 275). On the contrary, the predicted O-compounds (formaldehyde and methanol) have not been identified in this experiment. Furthermore, we have identified NH3 in the gaseous products with an initial mixture of N2 (98%) and CH4 (2%).The paper describes the experimental device used in this work, in particular the IRS and GC–MS techniques. We also comment the results related to the detection of the O-containing compounds and NH3 and their implications on our knowledge of the chemistry of Titan's atmosphere and on the retrieval of the future Titan data expected from Cassini-Huygens.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号