首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Launch of martian meteorites in oblique impacts
Authors:Natalia Artemieva  Boris Ivanov
Institution:Institute for Dynamics of Geospheres, Russian Academy of Sciences, Leninsky pr. 38, bldg.1, Moscow 119334, Russia
Abstract:A high-velocity oblique impact into the martian surface accelerates solid target material to escape velocity. A fraction of that material eventually falls as meteorites on Earth. For a long time they were called the SNC meteorites (Shergotty, Nakhla, and Chassigny). We study production of potential martian meteorites numerically within the frame of 3D hydrodynamic modeling. The ratio of the volume of escaping solid ejecta to projectile volume depends on the impact angle, impact velocity and the volatile content in the projectile and in the target. The size distribution of ejected fragments appears to be of crucial importance for the atmosphere-ejecta interaction in the case of a relatively small impact (with final crater size <3 km): 10-cm-sized particles are decelerated efficiently, while 30-50% of larger fragments could escape Mars. The results of numerical modeling are compared with shock metamorphic features in martian meteorites, their burial depth, and preatmospheric mass. Although it is impossible to accelerate ejected fragments to escape velocity without substantial compression (above 10 GPa), the maximum temperature increase in dunite (Chassigny) or ortopyroxenite (ALH84001) may be lower than 200 degree. This result is consistent with the observed chaotic magnetization of ALH84001. The probability of microbes' survival may be rather high even for the extreme conditions during the ejection process.
Keywords:Impact processes  Mars  Meteorites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号