首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The pyroxene pallasites,Vermillion and Yamato 8451: Not quite a couple
Authors:Joseph S BOESENBERG  Andrew M DAVIS  Martin PRINZ  Michael K WEISBERG  Robert N CLAYTON  Toshiko K MAYEDA
Abstract:Abstract— Two pallasites, Vermillion and Yamato (Y)‐8451, have been studied to obtain petrologic, trace element, and O‐isotopic data. Both meteorites contain low‐Ca and high‐Ca pyroxenes (<2% by volume) and have been dubbed “pyroxene pallasites.” Pyroxene occurs as large individual grains, as inclusions in olivine and in other pyroxene, and as grains along the edges of olivine. Symplectic overgrowths, sometimes found in Main Group and Eagle Station pallasites, are not seen in the pyroxene pallasites. Olivine compositions are Fa10–12, similar to those of Main Group pallasites. Siderophile trace element data show that metal in the two meteorites have significantly differing compositions that are, for many elements, outside the range of the Main Group and Eagle Station pallasites. These compositions also differ from those of IAB and IIIAB iron meteorites. Rare earth element (REE) patterns in merrillite are similar to those seen in other pallasites, indicating formation by subsolidus reaction between metal and silicate, with the merrillite inheriting its pattern from the surrounding silicates. The O‐isotopic compositions of Vermillion and Y‐8451 are similar but differ from Main Group or Eagle Station pallasites, as well as other achondrite and primitive achondrite groups. Although Vermillion and Y‐8451 have similar mineralogy, pyroxene compositions, REE patterns, and O‐isotopic compositions, there is sufficient evidence to resist formally grouping these two meteorites. This evidence includes the texture of Vermillion, siderophile trace element data, and the presence of cohenite in Vermillion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号