首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Major element fractionation in chondrites by distillation in the accretion disk of a T Tauri Sun?
Authors:Robert Hutchison
Abstract:Abstract— Redistribution or loss of batches of condensate from a cooling protosolar nebula is generally thought to have led to the formation of the chemical groups of chondrites. This demands a nebula hot enough for silicate vaporization over 1–3 AU, the region where chondrites formed. Alternatively, heating of a protosolar accretion disk may have been confined to an annular zone at its inner edge, ?0.06 AU from the protosun. Most infalling matter was accreted by the protosun, but a proportion was heated and carried outwards by an x‐wind. Shu et al. (1996, 1997) proposed that larger objects such as chondrules and calcium‐aluminum‐rich inclusions (CAIs) were returned to the disk at asteroidal distances by sedimentation from the x‐wind. Fine dust and gas were lost to space. The model implies that solids were not lost from the cold disk. The chemical compositions of the chondrite groups were produced by mixing different proportions of CAIs and chondrules with disk solids of CI composition. Heating at the inner edge of the disk was accompanied by particle irradiation, which synthesized nuclides including 26Al. The x‐wind model can produce CAIs, not chondrules, and allows survival of presolar grains >0.06 AU from the protosun. Normalization to Al and CI indicates that non‐carbonaceous chondrites may be disk material that gained a Si‐ and Mg‐enriched fraction. Carbonaceous chondrites are different; they appear to be CI that lost lithophile elements more volatile than Ca. Five carbonaceous chondrite groups also lost Ni and Fe but the CH group gained siderophiles. Elemental loss from CI is incompatible with the x‐wind model. Silicon and CI normalization confirms that the CM, CO, CK and CV groups may be CI that gained refractories as CAIs. The Si‐, Mg‐rich fraction may have formed by selective vaporization followed by precipitation on grains in the x‐wind. This fractional distillation mechanism can account for lithophile element abundances in non‐carbonaceous chondrite groups, but an additional process is required for the loss of Ca and Mn in the EL group and for fractionated siderophile abundances in the H, L and LL groups. Heated and recycled fractions were not homogenized across the disk so the chondrite groups were established in a single cycle of enhanced protosolar activity in lt;104 years, the time for a millimeter‐sized particle to drift into the Sun from 2 to 3 AU, due to gas‐drag.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号