首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 m, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from − 0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 mm in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity.  相似文献   

2.
There is an increasing awareness of the influence of surface moisture on aeolian entrainment and transport of sediment. Existing wind tunnel studies have shown the impact of a limited range of moisture contents on entrainment thresholds but similar investigations are lacking in the field. The research reported here investigated the influence of changes in surface moisture content on sand entrainment and transport on a meso-tidal beach in Anglesey, North Wales.High frequency (1 Hz) wind velocities measured with hot-wire anemometers were combined with grain impact data from a Sensit monitor and mass flux measurements from a standard sand trap. Surface and near-surface moisture contents were assessed gravimetrically from surface sand scrapes and also directly by using a ThetaProbe. Critical threshold values for entrainment were specified using a modified form of the time fraction equivalence method (Stout, J.E., Zobeck, T.M., 1996a. Establishing the threshold condition for soil movement in wind-eroding fields. Proceedings of the International Conference on Air Pollution from Agricultural Operations. MWPS C-3, Kansas City, 7–9 February 1996, pp. 65–71).Results indicate a time-dependent change in dominant control of the sand transport system from moisture to wind speed, dependent upon the moisture content of the surface sediment. This interchange between controlling parameters on both entrainment and transport was very sensitive to prevailing moisture conditions and took place over a period of minutes to hours. Under conditions experienced in the experiments presented here, the critical moisture threshold for sediment entrainment was determined to be between 4% and 6%, higher than the 1–4% specified in previous wind tunnel experiments. Furthermore, a moisture content of nearly 2% (where moisture was adhered to transported sediment) appeared to have little or no impact on the rate of sand flux.  相似文献   

3.
Beach–dune seasonal elevation changes, aeolian sand transport measurements, bathymetric surveys and shoreline evolution assessments were used to investigate annual and seasonal patterns of dune development on Sfântu Gheorghe beach, the Danube delta coast, from 1997 to 2004. Dune volume increased consistently (1.96 m3 m− 1 y− 1 to 5.1 m3 m− 1 y− 1) over this 7-year period with higher rates in the southward (downdrift) direction. Dune aggradation is periodically limited by storms, each of which marks a new evolutionary phase of the beach–dune system. As a consequence of the variable beach morphology and vegetation density during a year, foredune growth occurs during the April–December interval while between December and April a slightly erosive tendency is present. The pattern of erosion and deposition shown by the topographical surveys is in good agreement with the sand transport measurements and demonstrates the presence of a vigorous sand flux over the foredunes which is 20–50% smaller than on the beach. This high sand flux, due to low precipitation and sparse vegetation cover, creates an aerodynamically efficient morphology on the seaward dune slope. The seaward dune face accretes during low to medium onshore winds (5.5–12 m s− 1) and erodes during high winds (> 12 m s− 1).  相似文献   

4.
Ambient air particulate matter concentrations were measured at three locations in semi-arid SE Spain during 2005-2007. Sites representative of urban and rural background levels, as well as one representative of a rural area influenced by local mineral industry, were selected.The contribution of coarse particle resuspension (mainly crustal) in the area was assessed by studying the influence of wind speed, human activity and African dust outbreaks on the daily mass concentration and the aerosol number size distribution. Wind and soil characteristics in the area, typical of many semi-arid environments, are not conducive to major dust entrainment events.Twenty-four hour PM10 mass concentrations, subjected to air quality regulation, present a net decrease as wind speeds increase at the three study sites. Size-resolved measurements in the diameter range 0.25-32 μm with higher temporal resolution, however, show a net increase in the coarse particle concentrations with increasing wind speed, while the smallest particles are diluted. Although suspension is found to occur at all wind speeds, threshold values for an increase in particulate concentration can be identified and show some dependence on the particle size.African dust outbreaks, human activity and wind speed are (in this order) the main contributors for increasing particle sizes.  相似文献   

5.
Wind erosion has major impacts on dune growth, desertification, and architecture on sea coasts. The deflation threshold shear velocity is a crucial parameter in predicting erosion, and surface moisture greatly affects this threshold and thus sand stability. Wind tunnel studies have shown that reduced moisture contents decrease entrainment thresholds and increase wind erosion, but field and wind tunnel test data is lacking for tropical humid coastal areas. In this study, we investigated the influence of surface moisture contents (at 1 mm depth) on sand entrainment and erosion using tropical humid coastal sands from southern China. Shear velocities were deduced from velocity profiles above the sand. The threshold shear velocity increased linearly with increasing ln100M (M, gravimetric moisture content). The increase was steepest below a moisture content of 0.0124 (i.e., at M1.5, the moisture content in the sand at a matric potential of − 1.5 MPa). We compared several popular models that predict threshold shear velocity of moisture sediment, and found substantial differences between their predicted results. At a surface moisture content of 0.0124, the predicted increase in the wet threshold shear velocity compared with the dry threshold shear velocity ranged from 34% to 195%. The empirical model of Chepil and Selah simulated the data well for M < 0.0062 (i.e., 0.5M1.5), whereas Belly's empirical model simulated the data best for > 0.0062. Wind erosion modulus increased with increasing effective wind velocity following a power function with a positive exponent at all moisture contents, but decreased with increasing surface moisture content following a power function with a negative exponent. When wind speed and moisture content varied simultaneously, wind erosion modulus was proportional to the 0.73 power of effective wind velocity, but inversely proportional to the 1.48 power of M. The increase in resistance to erosion at low moisture contents probably results from cohesive forces in the water films surrounding the sand particles. At a moisture content near M1.5, wind erosion ceases nearly for all wind velocities that we tested.  相似文献   

6.
Saltation is a major mechanism for the transport of soil particles. In the present study, we carried out wind tunnel tests to examine the saltating trajectories of two types of natural sand collected from a beach (diameter, d = 300–500 μm and 200–300 μm respectively) as well as sand from the Taklimakan desert (d = 100–125 μm) in an atmospheric boundary layer. Consecutive images of saltating particles were recorded using a high-speed digital camera at a rate of 2000 fps with a spatial resolution of 1024 × 1024 pixels. The high temporal resolution of the acquired images enabled us to study the particle motion very close to the surface. The saltating particle trajectories were reconstructed from consecutive images, and the physical quantities characterizing the initial and final stages of the particle flight in the windward direction at friction velocities of about 10%–25% above the threshold friction velocity (u / ut = 1.11–1.26) were analyzed statistically. In addition, the transverse deviation of the saltating particles from the main streamwise direction was evaluated. The results shed new light on the complicated motions involved in sand saltation and should prove useful in the evaluation and formulation of theoretical models.  相似文献   

7.
Wind tunnel experiments were conducted to determine the efficiency of sediment samplers designed to measure the deposition of aeolian dust. Efficiency was ascertained relative to a water surface, which was considered the best alternative for simulating a perfectly absorbent surface. Two types of samplers were studied: the Marble Dust Collector (MDCO) and the inverted frisbee sampler. Four versions of the latter catcher were tested: an empty frisbee, an empty frisbee surrounded by an aerodynamic flow deflector ring, a frisbee filled with glass marbles, and a frisbee filled with glass marbles and surrounded by a flow deflector ring. Efficiency was ascertained for five wind velocities (range: 1–5 m s− 1) and eight grain size classes (range: 10–89 μm). The efficiency of dust deposition catchers diminishes rapidly as the wind speed increases. It also diminishes as the particles caught become coarser. Adding a flow deflector ring to a catcher substantially improves the catcher's efficiency, by up to 100% in some cases. The addition of glass marbles to a catcher, on the other hand, does not seem to increase the efficiency, at least not at wind velocities inferior to the deflation threshold. For higher velocities the marbles protect the settled particles from resuspension, keeping them in the catcher. The following five parameters determine the accumulation of aeolian dust in a catcher: the horizontal dust flux, the weight of the particles, atmospheric turbulence, resuspension, and the dust shadow effect created by the catcher. The final accumulation flux depends on the combination of these parameters. The catchers tested in this study belong to the best catchers currently in use in earth science and have been the subject of various aerodynamic studies to improve their efficiency. Nevertheless the catching efficiency remains low, in the order of 20–40% for wind speeds above 2 m s− 1. Other catchers suffer from the same low efficiencies. There is, thus, evidence to believe that dust deposition rates published in the aeolian literature and obtained by collecting the sediment in a catcher largely underestimate the true deposition. The errors are considerable, of the order of 100% and more. A reconsideration of the literature data on aeolian dust deposition measured by catchers is, therefore, required.  相似文献   

8.
地表风蚀导致的粉尘释放涉及全球变化研究的热点。自然条件下对粉尘释放的观测可以为风洞试验结果提供验证并为开发预测模型提供数据支撑与关键参数。本研究在河北坝上风蚀区,通过观测风蚀事件中农田近地表PM10浓度、垂直通量与流失通量,以及风速和风沙流强度的变化,探讨农田风蚀过程中的粉尘释放特征。结果表明:地表风蚀释尘对近地表粉尘浓度的影响随高度增大而逐渐减弱,各高度的粉尘浓度变化趋势与摩阻风速、输沙率变化趋势相同;粉尘垂直通量和流失通量与摩阻风速呈幂函数关系,与输沙率呈线性关系;农田土壤跃移颗粒的轰击效率α数量级为10-7m-1。  相似文献   

9.
Longitudinal (linear) sand dunes of the Simpson and Strzelecki dunefields in eastern central Australia present a paradox. Low levels of activity today stand in contrast to luminescence dating which has repeatedly shown deep deposits of sand on dune crests dating to within the late Holocene. In order to investigate the nature of dune activity in the Simpson–Strzelecki dunefield, vegetation and sand mobility were investigated by detailed vegetation survey and measurement of rippled area and loose sand depth of dunes at three sites along a climatic gradient. The response of both vegetation and sand movement to inter-annual climate variability was examined by repeat surveys of two sites in drought and non-drought conditions. Projected plant cover and plant + crust cover were found to have inverse linear relationships with rippled area and the area of deep loose sand. No relationship was found between these measures of sand movement and the plant frontal area index. A negative exponential relationship between equivalent mobile sand depth on dune surfaces and both vascular plant cover and vascular + crust cover was also found. There is no simple threshold of vegetation cover below which sand transport begins. Dunes with low perennial plant cover may form small dunes with slip faces leading to a positive feedback inhibiting ephemeral plant growth in wet years and accelerating sand transport rates. The linear dunefields are largely within the zone in which plant cover is sufficient to enforce low sand transport rates, and in which there is a strong response of vegetation and sand transport to inter-annual variation in rainfall. Both ephemeral plants (mostly forbs) and crust were found to respond rapidly to large (> 20 mm/month) rainfall events. On millennial time-scales, the level of dune activity is controlled by vegetation cover and probably not by fluctuations of wind strength. Land use or extreme, decadal time-scale, drought may destabilise dunes by removing perennial plant cover, accelerating wind erosion.  相似文献   

10.
Terrestrial ventifacts – rocks that have been abraded by windblown particles – are found in desert, periglacial, and coastal environments. On Mars, their abundance suggests that aeolian abrasion is one of the most significant erosional processes on the planet. There are several conflicting viewpoints concerning the efficacy of potential abrasive agents, principally sand and dust, and the relationships between wind direction and ventifact form. Our research, supported by a review of the literature, shows that sand, rather than dust or other materials, is the principle abrasive agent on Earth and Mars. Relative to dust, sand delivers about 1000× the energy onto rock surfaces on a per particle basis. Even multiple dust collisions will do little or no damage because the stress field from the impact is much smaller than the spacing of microflaws in the rock. The abrasion profiles of terrestrial ventifacts are consistent with a kinetic energy flux due to saltating sand, not airborne dust. Furthermore, Scanning Electron Microscope images reveal surfaces that are fractured and cleaved by sand grain impact. With respect to their distribution, ventifacts are found in regions that contain sand or did so in the past, but are not found where only dust activity occurs. Contrary to some published reports, our evidence from field studies, analytical models, and wind tunnel and other experiments indicates that windward, not leeward, abrasion is responsible for facet development and feature formation (pits, flutes, and grooves). Leeward abrasion is confined to fluvial conditions, in which the high viscosity and density of water are able to entrain sand-size material in vortices. Therefore, ventifacts and abraded terrain provide an unambiguous proxy for the direction of the highest velocity winds, and can be used to reconstruct palaeowind flow.  相似文献   

11.
Field experiments were conducted in Nellis Dunes Recreational Area (Clark County, Nevada, USA) to investigate emission of dust produced by off-road driving. Experiments were carried out with three types of vehicles: 4-wheelers (quads), dirt bikes (motorcycles) and dune buggies, on 17 soil types characteristic for a desert environment. Tests were done at various driving speeds, and emissions were measured for a large number of grain size fractions. This paper reports the results for two size fractions of emissions: PM10 (particles < 10 μm) and PM60 (particles < 60 μm). The latter was considered in this study to be sufficiently representative of the total suspendable fraction (TSP). Off-road driving was found to be a significant source of dust. However, the amounts varied greatly with the type of soil and the characteristics of the top layer. Models predicting emission of dust by off-road driving should thus consider a number of soil parameters and not just one key parameter. Vehicle type and driving speed are additional parameters that affect emission. In general, 4-wheelers produce more dust than dune buggies, and dune buggies, more than dirt bikes. Higher speeds also result in higher emissions. Dust emitted by off-road driving is less coarse than the parent sediment on the road surface. Off-road driving thus results in a progressive coarsening of the top layer. Exceptions to this are silty surfaces with no, or almost no, vegetation. For such surfaces no substantial differences were observed between the grain size distribution of road dust and emitted dust. Typical emission values for off-road driving on dry desert soils are: for sandy areas, 30–40 g km− 1 (PM10) and 150–250 g km− 1 (TSP); for silty areas, 100–200 g km− 1 (PM10) and 600–2000 g km− 1 (TSP); for drainages, 30–40 g km− 1 (PM10) and 100–400 g km− 1 (TSP); and for mixed terrain, 60–100 g km− 1 (PM10) and 300–800 g km− 1 (TSP). These values are for the types of vehicles tested in this study and do not refer to cars or trucks, which produce significantly more dust.  相似文献   

12.
Studies of the particle size and sorting characteristics of sand on the stoss slope of a 6-m high reversing dune show that the sand in transport is generally finer and better sorted than surface sand at the same position on the slope. The sand in transport becomes coarser and more poorly sorted as wind speed and rates of mass transport increase toward the dune crest. These patterns reflect changes in the competence of the wind, which is capable of transporting larger grains and a wider range of grain sizes as its speed increases in space and time. Our field observations suggest that the particle size and sorting characteristics of surface sand are highly dependent on antecedent wind conditions and are not an invariant property of the dune, as is widely assumed. The wide range of particle sizes on the surface, as well as its change through time, also has important implications for modeling sediment transport on dunes. Transport thresholds may vary by as much as 30% on the stoss slope of the study dune.  相似文献   

13.
樊莉  武生智 《中国沙漠》2011,30(3):583-587
 为研究更加接近实际情况的风沙运动,并为实验研究提供一些理论分析和数值资料,本研究用数值计算的方法模拟了几种不同粒径分布方式相应的风沙跃移运动。分别计算了沙粒为单一粒径,以及粒径数学期望为该值时的伪随机分布和均匀分布共7种情况下的风沙跃移运动。计算结果表明,对于相同风速,气流对单一粒径组成的均匀沙的携带能力较弱,而对由多粒径组成的非均匀沙的携带能力较强。同时,因沙粒粒径组成的改变导致当跃移运动达到饱和时,风沙流饱和层的高度和沙粒的跃移长度、高度均有所变化。  相似文献   

14.
The vertical distribution of the wind-blown sand flux in a 40-cm flow layer above the ground surface was investigated through laboratory wind-tunnel tests and field measurements on the mobile dune surface during sand storms in the Taklamakan Desert of China. Results show that vertical distribution of the horizontal mass flux of drifting sand is a discontinuous function of height. More than 90% of the total material is transported in the flow layer from the surface to 14 cm. From 2 to 4 cm above the surface, a distinct transition zone occurs wherein mixed transport by creep, saltation, and suspension becomes saltation and suspension. The flow layer from 14 to 15 cm represents a further transition from saltation to suspension, where the distribution curves of the transport rate against height converge. The basic natural exponential function cannot describe well the vertical distribution of the saltation mass flux in the Taklamakan Desert. As a function of height, saltation mass flux follows a function qsalt = a'Z-bZ, and the distribution of suspension mass flux fits the power function very well. A total transport rate from surface creep to saltation and suspension in the measured flow layer, which is directly proportional to the effective wind speed squared (V - Vt)2, can be predicted by integrating Q = a'Z-bZ + cZ-d. The height distribution of the average quantities of transported materials varies as an exponential function of wind speed, and deceases with the increase in total transport quantity. Higher wind speed results in a higher transport rate and a higher vertical gradient for the particle concentration. The increment of relative transport quantity in the higher flux layer increases as wind speed increases, which generates a higher concentration of drifting particles in the upper flow layer. [Key words: aeolian geomorphology, aeolian transport, horizontal sand flux, sand dune, vertical sediment distribution, Taklamakan Desert.]  相似文献   

15.
尘卷风是地球上常见的小型风沙灾害输移系统,但在火星上却大的多。而且尘卷风内部的电场对火星探测器产生严重的电磁干扰。通过建立尘卷风及其电场形成的模型,对尘卷风结构特征及电场进行数值计算。研究表明:尘卷风的形成机理可以用热对流泡理论来解释。沙粒在尘卷风中出现分层现象,粒径小的沙尘往往在粒径大的沙尘上面。尘卷风中带正负电荷的沙粒大约各占23.4%,荷质比大约为60 μC·kg-1时,尘卷风数值模拟结果与野外观测值吻合。在尘卷风发展过程中,尘卷风电场大约需要60 s达到稳定。而且电场关于尘卷风中心基本对称,并且在尘卷风中心电场强度较大,在离尘卷风较远的地方,电场趋于零。在距离尘卷风中心一定距离处电场随高度增大先增大后减小,大约10 m以下电场随高度增大而增大,在10 m以上电场随高度增大而减小。  相似文献   

16.
彭晓庆  王萍 《中国沙漠》2011,30(3):588-592
 采用有限体积法模拟了风速正弦变化下的一维非平稳跃移风沙流发展过程。考虑风沙流跃移系统的4个子过程,沙粒的流体起动、沙粒的运动、击溅过程和沙粒对风场的反作用。给出在风速正弦变化时,风速变化频率和振幅对于沙粒输运的影响以及输沙率、风速廓线、床面剪切应力以及起跳沙粒数的变化规律。结果表明,输沙率随着振幅增大而增大,随着周期增大而减小;在初始的overshoot现象之后,床面剪切应力变化很小,但起跳的沙粒数随风速呈现类正弦周期变化。  相似文献   

17.
We investigated the temporal dynamics of dust entrainment in the Bodélé Depression, Central Sahara, to better understand the intra-annual variability of aerosol emission in the world's largest dust source. The linkages between dust entrainment and large-scale meteorological factors were examined by correlating several meteorological variables in the Mediterranean and Africa north of the equator with the aerosol concentrations in the Bodélé Depression separately for winter and summer. The methodological tools applied are NCEP/NCAR reanalysis data and the aerosol index of the Total Ozone Mapping Spectrometer (TOMS-AI), available for 15 years from 1978 to 1993. We found that dust mobilisation during the Harmattan season is highly dependent on air pressure variability in the Mediterranean area. High pressure to the north of the Bodélé intensifies the NE trade winds, leading to an increased entrainment of dust in the Bodélé Depression. In summer, dust mobilization cannot be explained by the large scale meteorological conditions. This highlights the importance of local to regional wind systems linked to the northernmost position of the intertropical convection zone (ITCZ) during this time.  相似文献   

18.
A detailed understanding of channel forming and maintenance processes in mountain streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are problematic because of the high formative discharges characteristic of such streams. The application of Optically Stimulated Luminescence (OSL) dating is proposed here as a new way of determining actual residency times of fine sediments and consequently validating selected predictions for the entrainment of sediment in these streams. Model predictions of sediment mobility for selected step-pool and plane-bed channels in a mountain catchment in south eastern Australia are initially calculated using equations of hydraulic competence and the one-dimensional HEC-RAS model. Results indicate that floods exceeding bankfull with recurrence intervals up to 13 years are competent to mobilise the maximum overlying surface grain sizes at both sites. OSL minimum age model results from 7 samples of well bleached quartz in the fine matrix particles indicate general agreement with selected competence equations. The apparent long (100–1400 y) burial age of most of the mineral quartz, however, suggests that competent flows are not able to flush all subsurface fine-bed material. The depth of maximum bed load exchange (flushing) was limited to ≤ twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of storage and flushing of matrix material in mountain streams.  相似文献   

19.
Recovery in soil properties and processes after sand burial in the Tengger Desert, northern China, was documented at five different-aged revegetated sites (1956, 1964, 1973, 1982, and 1991) and at a reference site with native vegetation, which had never been damaged by sand burial and was enclosed for grazing. The proportions of silt and clay, depth of topsoil and biological soil crusts, and concentrations of soil organic C, K, total N and total P increased with years since revegetation. Most characteristics of topsoil (0–5 cm) characteristics had recovered to 60% of those measured at the reference site by 50 years after sand-binding vegetation had been established. Exceptions were electrical conductivity and contents of sand, silt, CaCO3 and organic C, which recovered to 20–40% of the values at the reference site. The difference in annual recovery rates of soil properties between the two most recently revegetated sites (0–14 years) was greater than the difference between the two oldest revegetated sites (43–50 years). Best-fit asymptote models showed that the estimated times for the soil properties in the 50-year-old site to reach the same levels as in the reference site (i.e. an undisturbed, native steppified desert ecosystem) would be between 23 and 245 years, but for some properties even maximum recovery after > 50 years still fell significantly short of the level at the reference site. These results suggest that soil recovery is a slow process in an extremely arid desert environment, and therefore the conservation of soil habitat is a crucial issue for land managers.  相似文献   

20.
沙尘起动初期近地面浓度分布数值模拟研究   总被引:3,自引:1,他引:2  
对沙尘事件发生初始阶段近地面空间的风沙运动进行了数值模拟研究。考虑固相的剪切黏性、总体黏性、气固相间动量交换、升力等,建立了一个二维气固两相流动数学模型。采用Fluent流体力学软件,进行数值计算。对一组风洞实验数据进行了模拟计算,验证了本模型和计算方法的正确性。研究区域高500 m、长1 000 m。近地层风速廓线采用指数式。沙尘粒度分布用R-R分布;粒径5~150 μm。模拟计算得出近地层内不同风速、沙粒直径的风沙速度及沙尘体积浓度空间分布。结果表明,沙尘起动初期分为发展壮大、回落、稳定3个阶段。沙尘卷起的发展段长度、沙尘卷扬高度及浓度分布曲线形状,均随沙粒和入口风速而明显变化。到达稳定阶段,沙尘浓度沿高度的分布表现为,近地面存在一个均匀的浓度层,即饱和层,其浓度、高度取决于风速和沙粒粒径;饱和层以上沙尘浓度呈指数衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号