首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member orthoferrosilite (FeSiO3, fs) at simultaneous high pressures (3.4–4.8 GPa) and high temperatures (1,148–1,448 K), to improve constraints on the density of orthopyroxene in the lunar interior. Unit-cell volumes were determined through in situ energy-dispersive synchrotron X-ray diffraction in a multi-anvil press, using MgO as a pressure marker. Our volume data were fitted to a high-temperature Birch–Murnaghan equation of state (EoS). Experimental data are reproduced accurately, with a  $\varDelta P$ Δ P  standard deviation of 0.20 GPa. The resulting thermoelastic parameters of fs are: V 0 = 875.8 ± 1.4 Å3K 0 = 74.4 ± 5.3 GPa, and $\frac{{\text d}K}{{\text d}T} = -0.032 \pm 0.005\,\hbox{GPa K}^{-1}$ d K d T = - 0.032 ± 0.005 GPa K - 1 , assuming ${K}^{\prime}_{0} = 10 $ K 0 ′ = 10 . We also determined the thermal equation of state of a natural Fe-rich orthopyroxene from Hidra (Norway) to assess the effect of magnesium on the EoS of iron-rich orthopyroxene. Comparison between our two data sets and literature studies shows good agreement for room-temperature, room-pressure unit-cell volumes. Preliminary thermodynamic analyses of orthoferrosilite, FeSiO3, and orthopyroxene solid solutions, (Mg1?x Fe x ) SiO3, using vibrational models show that our volume measurements in pressure–temperature space are consistent with previous heat capacity and one-bar volume–temperature measurements. The isothermal bulk modulus at ambient conditions derived from our measurements is smaller than values presented in the literature. This new simultaneous high-pressure, high-temperature data are specifically useful for calculations of the orthopyroxene density in the Moon.  相似文献   

2.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

3.
The thermo-elastic behaviour of Be2BO3(OH)0.96F0.04 (i.e. natural hambergite, Z = 8, a = 9.7564(1), b = 12.1980(2), c = 4.4300(1) Å, V = 527.21(1) Å3, space group Pbca) has been investigated up to 7 GPa (at 298 K) and up to 1,100 K (at 0.0001 GPa) by means of in situ single-crystal X-ray diffraction and synchrotron powder diffraction, respectively. No phase transition or anomalous elastic behaviour has been observed within the pressure range investigated. P?V data fitted to a third-order Birch–Murnaghan equation of state give: V 0 = 528.89(4) Å3, K T0 = 67.0(4) GPa and K′ = 5.4(1). The evolution of the lattice parameters with pressure is significantly anisotropic, being: K T0(a):K T0(b):K T0(c) = 1:1.13:3.67. The high-temperature experiment shows evidence of structure breakdown at T > 973 K, with a significant increase in the full-width-at-half-maximum of all the Bragg peaks and an anomalous increase in the background of the diffraction pattern. The diffraction pattern was indexable up to 1,098 K. No new crystalline phase was observed up to 1,270 K. The diffraction data collected at room-T after the high-temperature experiment showed that the crystallinity was irreversibly compromised. The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α 0 + α 1 T ?1/2. The refined parameters for Be2BO3(OH)0.96F0.04 are: α 0 = 7.1(1) × 10?5 K?1 and α 1 = ?8.9(2) × 10?4 K ?1/2 for the unit-cell volume, α 0(a) = 1.52(9) × 10?5 K?1 and α 1(a) = ?1.4(2) × 10?4 K ?1/2 for the a-axis, α 0(b) = 4.4(1) × 10?5 K?1 and α 1(b) = ?5.9(3) × 10?4 K ?1/2 for the b-axis, α 0(c) = 1.07(8) × 10?5 K?1 and α 1(c) = ?1.5(2) × 10?4 K ?1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α 0(a):α 0(b):α 0(c) = 1.42:4.11:1. The main deformation mechanisms in response to the applied temperature, based on Rietveld structure refinement, are discussed.  相似文献   

4.
The thermoelastic parameters of synthetic Mn3Al2Si3O12 spessartine garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1,100 K, by synchrotron radiation energy dispersive X-ray diffraction within a DIA-type multi-anvil press apparatus. The analysis of room temperature data yielded K 0 = 172 ± 4 GPa and K 0  = 5.0 ± 0.9 when V 0,300 is fixed to 1,564.96 Å3. Fitting of PVT data by means of the high-temperature third-order Birch–Murnaghan EoS gives the thermoelastic parameters: K 0 = 171 ± 4 GPa, K 0  = 5.3 ± 0.8, (?K 0,T /?T) P  = ?0.049 ± 0.007 GPa K?1, a 0 = 1.59 ± 0.33 × 10?5 K?1 and b 0 = 2.91 ± 0.69 × 10?8 K?2 (e.g., α 0,300 = 2.46 ± 0.54 × 10?5 K?1). Comparison with thermoelastic properties of other garnet end-members indicated that the compression mechanism of spessartine might be the same as almandine and pyrope but differs from that of grossular. On the other hand, at high temperature, spessartine softens substantially faster than pyrope and grossular. Such softening, which is also reported for almandine, emphasize the importance of the cation in the dodecahedral site on the thermoelastic properties of aluminosilicate garnet.  相似文献   

5.
P-V-T data of MgSiO3 orthoenstatite have been measured by single-crystal X-ray diffraction at simultaneous high pressures (in excess of 4.5 GPa) and temperatures (up to 1000 K). The new P-V-T data of the orthoenstatite, together with previous compression data and thermal expansion data, are described by a modified Birch-Murnaghan equation of state for diverse temperatures. The fitted thermoelastic parameters for MgSiO3 orthoenstatite are: thermal expansion ?α/?P with values of a=2.86(29)×10-5 K-1 and b=0.72(16)×10-8 K-2; isothermal bulk modulus K T o =102.8(2) GPa; pressure derivative of bulk modulus K′=?K/?P=10.2(1.2); and temperature derivative of bulk modulus K=?K/?T=-0.037(5) GPa/K. The derived thermal Grüneisen parameter is γ th=1.05 for ambient conditions; Anderson-Grüneisen parameter is δ T o =11.6, and the pressure derivative of thermal expansion is ?α/?P=-3.5×10-6K-1 GPa-1. From the P-V-T data and the thermoelastic equation of state, thermal expansions at two constant pressures of 1.5 GPa and 4.0 GPa are calculated. The resulting pressure dependence of thermal expansion is Δα/ΔP=-3.2(1)× 10-6 K-1 GPa-1. The significantly large values of K′, K, δ T and ?α/?P indicate that compression/expansion of MgSiO3 orthoenstatite is very sensitive to changes of pressure and temperature.  相似文献   

6.
The thermal dehydration process of fibroferrite, FeOH(SO4)·5H2O, a secondary iron-bearing hydrous sulfate, was investigated by in situ high-temperature synchrotron X-ray powder diffraction (HT-XRPD), in situ high-temperature Fourier transform infrared spectroscopy (HT-FTIR) and thermal analysis (TGA-DTA) combined with evolved gas mass spectrometry. The data analysis allowed the determination of the stability fields and the reaction paths for this mineral as well as characterization of its high-temperature products. Five main endothermic peaks are observed in the DTA curve collected from room T up to 800 °C. Mass spectrometry of gases evolved during thermogravimetric analysis confirms that the first four mass loss steps are due to water emission, while the fifth is due to a dehydroxylation process; the final step is due to the decomposition of the remaining sulfate ion. The temperature behavior of the different phases occurring during the heating process was analyzed, and the induced structural changes are discussed. In particular, the crystal structure of a new phase, FeOH(SO4)·4H2O, appearing at about 80 °C due to release of one interstitial H2O molecule, was solved by ab initio real-space and reciprocal-space methods. This study contributes to further understanding of the dehydration mechanism and thermal stability of secondary sulfate minerals.  相似文献   

7.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

8.
Crystal-structure modeling of experimental Ca-rich clinopyroxenes [Ca + Na > 0.5 apfu; Mg/(Mg + Fe2+) > 0.7] coexisting with basic and ultrabasic melts was utilized for calibration of geobarometers based on unit-cell volume (Vcell) vs M1-site volume (VM1). The clinopyroxene database includes over one hundred experiments from literature and sixteen previously unpublished experiments on basanite and picrobasalt starting materials. The coexisting melts span a wide range of petrologically relevant anhydrous and hydrous compositions (from quartz-normative basalt to nephelinite, excluding high-Al basalts and melts coexisting with garnet or melilite) at pressure conditions pertinent to the earth's crust and uppermost mantle (P= 0–24 kbar) in a variety of fO 2 conditions (from CCO-buffered to air-buffered) and mineral assemblages (Cpx ± Opx ± Pig ± Ol ± Plag ± Lc ± Ne ± Spl ± Amp ± Ilm). As previously found for near-liquidus products of basaltic melts, the experimental clinopyroxenes follow two distinct trends: (i) at a given P, Vcell is linearly and negatively correlated with VM1. This corresponds with the extent of Tschermak-type substitutions, which depends strongly on aSiO2 and a CaO; (ii) for a fixed melt composition, Vcell and VM1 decrease linearly as P increases, due to a combination of M1, M2 and T site exchanges. Despite the chemical complexity of these relationships, P could be modeled as a linear function of Vcell and VM1. A simplified solution for anhydrous magmas reproduced the experimental pressures with an uncertainty of 1.75 kbar (=1 ; max. dev. = 5.5 kbar; N = 135). An expanded T-dependent solution capable of recovering the measured pressures of both anhydrous and hydrous experiments with an uncertainty of 1.70 kbar (=1 ; max. dev. = 5.4 kbar; N = 157) was obtained by correcting unit-cell and M1-site volumes for thermal expansivity and compressibility. The corrected formulation is more resistant to the effects of temperature variations and is therefore recommended. Nevertheless, it requires an independent, accurate estimate of crystallization T. Underestimating T by 20 °C propagates into a 1-kbar increase of calculated P. The applicability of the T-dependent formulation was tested on hydrous ultramafic to gabbroic rocks of the southern Adamello batholith for which P-T evolution could independently be constrained by field observation, petrography and experimentally determined phase relations. The pressure estimates obtained by clinopyroxene structural geobarometry closely matched those predicted by phase equilibria of a picrobasaltic melt parental to the investigated magmatic rocks. To facilitate application of the present geobarometers, both anhydrous and corrected solutions were implemented as MS-DOS® and UNIX® software programs (CpxBar) designed to permit retrieval of the pressure of crystallization directly from a chemical analysis or from uncorrected unit-cell and M1-site volume X-ray data.  相似文献   

9.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

10.
High-temperature Raman spectra and thermal expansion of tuite, γ-Ca3(PO4)2, have been investigated. The effect of temperature on the Raman spectra of synthetic tuite was studied in the range from 80 to 973 K at atmospheric pressure. The Raman frequencies of all observed bands for tuite continuously decrease with increasing temperature. The quantitative analysis of temperature dependence of Raman bands indicates that the changes in Raman frequencies for stretching modes (ν3 and ν1) are faster than those for bending modes (ν4 and ν2) of PO4 in the present temperature range, which may be attributed to the structural evolution of PO4 tetrahedron in tuite at high temperature. The thermal expansion of tuite was examined by means of in situ X-ray diffraction measurements in the temperature range from 298 to 923 K. Unit cell parameters and volume were analyzed, and the thermal expansion coefficients were obtained as 3.67 (3), 1.18 (1), and 1.32 (3) × 10?5 K?1 for V, a, and c, respectively. Thermal expansion of tuite shows an axial anisotropy with a larger expansion coefficient along the c-axis. The isothermal and isobaric mode Grüneisen parameters and intrinsic anharmonicity of tuite have been calculated by using present high-temperature Raman spectra and thermal expansion coefficient combined with previous results of the isothermal bulk modulus and high-pressure Raman spectra.  相似文献   

11.
The molar volumes of 19 hydrous albitic liquids (1.9 to 6.1 wt% H2Ototal) were determined at one bar and 505–765 K. These volume data were derived from density measurements on hydrous glasses at 298 K, followed by measurements of the thermal expansion of each glass from 298 K to its respective glass transition temperature. The technique exploits the fact that the volume of a glass is equal to that of the corresponding liquid at the limiting fictive temperature (T f′), and that T f′ can be approximated as the temperature near the onset of the rapid increase in thermal expansion that occurs in the glass transition interval. The volume data of this study were combined with available volume data for anhydrous, Na2O-Al2O3-SiO2 liquids to derive the partial molar volume (±1) of the H2O component in an albitic melt at ∼565 K and one bar. To extend the determination of to higher temperatures and pressures, the molar volumes of the hydrous albitic liquids determined in this study were combined with those measured by previous authors at 1023–1223 K and 480–840 MPa, leading to the following fitted values (±1) at 1673 K and one bar: (±0.46)×10−3 cm−3/mol-K, and dVˉ H 2 O total /dP=−3.82 (±0.36)×10−4 cm3/mol-bar. The measured molar volumes of this study and those of previous authors can be recovered with a standard deviation of 0.5%, which is within the respective experimental errors. There is a significant difference between the values for derived in this study as a function of temperature and pressure and those obtained from an existing polynomial, primarily caused by the previous absence of accurate density measurements on anhydrous silicate liquids. The coefficients of thermal expansion (=4.72×10−4/K) and isothermal compressibility ( T =1.66×10−5/bar) for the H2O component at 1273 K and 100 MPa, indicate that H2Ototal is the single most expansive and compressible component in silicate liquids. For example, at 1473 K and 70 MPa (conditions of a mid-ocean ridge crustal magma chamber), the presence of just 0.4 wt% H2O will decrease the density of a basaltic liquid by more than one percent. An equivalent decrease in melt density could be achieved by increasing the temperature by 175 degrees or the decreasing pressure by 230 MPa. Therefore, even minor quantities of dissolved water will have a marked effect on the dynamic properties of silicate liquids in the crustal environment. Received: 20 August 1996 / Accepted: 15 March 1997  相似文献   

12.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   

13.
The molar volume of glaucophane [Na2Mg3Al2Si8O22(OH)2] has been determined in this study by correcting synthetic glaucophane-rich amphiboles made in the system Na2O–MgO–Al2O3–SiO2–H2O for very small deviations from ideal glaucophane composition using recent volume data on key amphibole components. The derived unit-cell volume for end-member glaucophane is 862.7±1.6 Å3, which gives a molar volume of 259.8±0.5 cm3/mol and a calculated density of 3.016±0.006 g/cm3. This value has been corroborated through an essentially independent method by correcting the volumes of natural sodic amphiboles reported in the literature for non-glaucophane components, particularly including calcium-rich components, to yield a value of 861.2±1.9 Å3. The unit-cell volume derived from the synthetic amphiboles, which is considered here to be more reliable, is somewhat smaller than that reported previously in the literature. A thermal expansion (αV) at 298 K of 1.88±0.06×10?5/K was derived from unit-cell volumes measured in the range of 25–500°C for a synthetic glaucophane sample, which is noticeably smaller than previously reported.  相似文献   

14.
Phase relations for a natural serpentinite containing 5 wt% of magnetite have been investigated using a multi-anvil apparatus between 6.5 and 11 GPa and 400–850 °C. Post-antigorite hydrous phase assemblages comprise the dense hydrous magnesium silicates (DHMSs) phase A (11.3 wt% H2O) and the aluminous phase E (Al-PhE, 11.9 wt% H2O). In addition, a ferromagnesian hydrous silicate (11.1 wt% H2O) identified as balangeroite (Mg,Fe)42Si16O54(OH)40, typically described in low pressure natural serpentinite, was found coexisting with Al-PhE between 650 and 700 °C at 8 GPa. In the natural antigorite system, phase E stability is extended to lower pressures (8 GPa) than previously reported in simple chemical systems. The reaction Al-phase E?=?garnet?+?olivine?+?H2O is constrained between 750 and 800 °C between 8 and 11 GPa as the terminal boundary between hydrous mineral assemblages and nominally anhydrous assemblages, hence restricting water transfer into the deep mantle to the coldest slabs. The water storage capacity of the assemblage Al-PhE?+?enstatite (high-clinoenstatite)?+?olivine, relevant for realistic hydrated slab composition along a relatively cold temperature path is estimated to be ca. 2 wt% H2O. Attempts to mass balance run products emphasizes the role of magnetite in phase equilibria, and suggests the importance of ferric iron in the stabilization of hydrous phases such as balangeroite and aluminous phase E.  相似文献   

15.
To study the structural behavior of brucite at high temperature, we conducted in situ neutron diffraction experiments of a deuterated brucite powder sample, Mg(OD)2, in the temperature range 313–583 K. The sample was stable up to 553 K, above which it started to decompose into periclase (MgO) and D2O vapor. Rietveld analyses of the obtained data were performed using both single-site and three-site split-atom hydrogen models. Our results show that with increasing temperature, unit-cell parameter c increases at a rate ~7.7 times more rapidly than a. This large anisotropy of thermal expansion is primarily due to rapid increase in the interlayer thickness along the c-axis on heating. The amplitudes of thermal vibration for Mg, O, and D increase linearly with increasing temperature; however, the rate of the increase for the lighter D is much larger. In addition, D vibrates anisotropically with a higher magnitude within the (001) plane, as confirmed by our first-principles phonon calculations. On heating, the interatomic distances between a given D and its associated O and D from the adjacent [MgO6] layer increase, whereas the O–D bond length decreases. This behavior suggests weakened D···O and D···D interlayer interactions but strengthened O–D bonding with increasing temperature.  相似文献   

16.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   

17.
We have collected high-resolution neutron powder diffraction patterns from MgSO4·11D2O over the temperature range 4.2–250 K. The crystal is triclinic, space-group \( \text{P} \bar{1} \) (Z = 2) with a = 6.72746(6) Å, b = 6.78141(6) Å, c = 17.31803(13) Å, α = 88.2062(6)°, β = 89.4473(8)°, γ = 62.6075(5)°, and V = 701.140(6) Å3 at 4.2 K, and a = 6.75081(3) Å, b = 6.81463(3) Å, c = 17.29241(6) Å, α = 88.1183(3)°, β = 89.4808(3)°, γ = 62.6891(3)°, and V = 706.450(3) Å3 at 250 K. Structures were refined to wRp = 3.99 and 2.84% at 4.2 and 250 K, respectively. The temperature dependence of the lattice parameters over the intervening range have been fitted with a modified Einstein oscillator model which was used to obtain the coefficients of the thermal expansion tensor. The volume thermal expansion, αV, is considerably smaller than ice Ih at all temperatures, and smaller even than MgSO4·7D2O (although ?αV/?T is very similar for both sulfates); MgSO4·11D2O exhibits negative αV below 55 K (compared to 70 K in D2O ice Ih and 20 K in MgSO4·7D2O) The relationship between the magnitude and orientation of the principal axes of the expansion tensor and the main structural elements are discussed.  相似文献   

18.
Abstract Dehydration-melting reactions, in which water from a hydrous phase enters the melt, leaving an anhydrous solid assemblage, are the dominant mechanism of partial melting of high-grade rocks in the absence of externally derived vapour. Equilibria involving melt and solid phases are effective buffers of aH2,o. The element-partitioning observed in natural rocks suggests that dehydration melting occurs over a temperature interval during which, for most cases, aH2o is driven to lower values. The mass balance of dehydration melting in typical biotite gneiss and metapelite shows that the proportion of melt in the product assemblage at T± 850°C is relatively small (10–20%), and probably insufficient to mobilize a partially melted rock body. Granulite facies metapelite, biotite gneiss and metabasic gneiss in Namaqualand contain coarse-grained, discordant, unfoliated, anhydrous segregations, surrounded by a finer grained, foliated matrix that commonly includes hydrous minerals. The segregations have modes consistent with the hypothesis that they are the solid and liquid products of the dehydration-melting reactions: Bt + Sil + Qtz + PI = Grt ° Crd + Kfs + L (metapelite), Bt + Qtz + Pl = Opx + Kfs + L (biotite gneiss), and Hbl + Qtz = Opx + Cpx + Pl + L (metabasic gneiss). The size, shape, distribution and modes of segregations suggest only limited migration and extraction of melt. Growth of anhydrous poikiloblasts in matrix regions, development of anhydrous haloes around segregations and formation of dehydrated margins on metabasic layers enclosed in migmatitic metapelites all imply local gradients in water activity. Also, they suggest that individual segregations and bodies of partially melted rock acted as sinks for soluble volatiles. The preservation of anhydrous assemblages and the restricted distribution of late hydrous minerals suggest that retrograde reaction between hydrous melt and solids did not occur and that H2O in the melt was released as vapour on crystallization. This model, combined with the natural observations, suggests that it is possible to form granulite facies assemblages without participation of external fluid and without major extraction of silicate melt.  相似文献   

19.
The crystal chemistry of paratacamite has been re-evaluated by studying a crystal from the holotype specimen BM86958 of composition Cu3.71Zn0.29(OH)6Cl2 using single-crystal X-ray diffraction at 100, 200, 300, 353, 393 and 423 K. At 300 K paratacamite has space group $R\bar{3}$ with unit-cell parameters a 13.644 and c 14.035 Å and exhibits a pronounced subcell, a′ = ½a and c′ = c, analogous to that of the closely related mineral herbertsmithite, Cu3Zn(OH)6Cl2. Between 353 and 393 K, paratacamite undergoes a reversible phase transformation to the herbertsmithite-like substructure, space group $R\bar{3}m$ , unit-cell parameters a 6.839 and c 14.072 Å (393 K). The transformation is characterised by a gradual reduction in intensity of superlattice reflections, which are absent at 393 and 443 K. On cooling from 443 to 300 K at ~10 K min?1, the superlattice reflections reappear and the refined structures ( $R\bar{3}$ ) of the initial and recovered 300 K states are almost identical. The complete reversibility of the transformation establishes that paratacamite of composition Cu3.71Zn0.29(OH)6Cl2 is thermodynamically stable at ambient temperatures. The nature of the rhombic distortion of the M(2)O6 octahedron is discussed by considering two possibilities that are dependent upon the nature of cation substitution in the interlayer sites.  相似文献   

20.
Two samples of hydroxyl-clinohumite, sample SZ0407B with approximate composition Mg8.674(14)Fe0.374(4)(Si0.99(1)O4)4(OH)2 and sample SZ0411B with composition Mg9(SiO4)4(OH)2, were synthesized at 12 GPa and 1,250 °C coexisting with olivine. Unit-cell parameters determined by single-crystal X-ray diffraction are given as follows: a = 4.7525(4) Å, b = 10.2935(12) Å, c = 13.7077(10) Å, α = 100.645(9)°, V = 659.04(9) Å3 for SZ0407B, and a = 4.7518(6) Å, b = 10.2861(12) Å, c = 13.7008(9) Å, α = 100.638(9)°, V = 658.15(9) Å3 for SZ0411B. Single-crystal X-ray intensity data were collected for crystal structure refinements of both samples. Relative to the pure-Mg sample, Fe decreases M3–OH bond lengths by ~0.010(3) Å, consistent with some ferric iron ordering into M3. Raman spectroscopy shows two strong bands in the lattice-mode region at 650 and 690 cm?1 in the Fe-bearing sample, which are not observed in the pure-Mg sample. Spectra in the H2O region show at least five bands, which are deconvolved into seven distinct O–H-stretching modes. Thermal expansion measurements were carried out for both samples from 153 to 787 K by single-crystal X-ray diffraction. The average a-, b-, c-axial and volumetric thermal expansion coefficients (10?6 K?1) are 10.5(1), 12.3(2), 12.5(2) and 34.9(5) for SZ0407B, respectively, and 11.1(1), 12.6(3), 13.7(3), 36.8(6) for SZ0411B, respectively. After heating, the unit-cell parameters were refined again for each sample at ambient condition, and no significant changes were observed, indicating no significant oxidation or dehydration during the experiment. For the DHMS phases along the brucite–forsterite join, linear regression gives a systematic linear decrease in expansivity with increasing density. Further, substitution of ferrous iron into these structures decreases thermal expansivity, making the Fe-bearing varieties slightly stiffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号