首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, analysis of hydrogeological conditions, as well as hydrochemistry and isotopic tools were used to get an insight into the processes controlling mineralization, recharge conditions, and flow pattern of groundwater in a typical arid alluvial-lacustrine plain in Qaidam Basin, northwest China. Analysis of the dissolved constituents reveals that groundwater evolves from fresh water (TDS =300–1000 mg/l) to saline water (TDS ≥5000 mg/l) along the flow paths, with the water type transiting from HCO 3?Cl–Na ?Mg to HCO 3?Cl–Na, and eventually to Cl–Na. Groundwater chemical evolution is mainly controlled by water–rock interaction and the evaporation–crystallization process. Deuterium and oxygen-18 isotopes in groundwater samples indicate that the recharge of groundwater is happened by meteoric water and glacier melt-water in the Kunlun Mountains, and in three different recharge conditions. Groundwater ages, estimated by the radiogenic (3H and 14C) isotope data, range from present to Holocene (~28 ka). Based on groundwater residence time, hydrogeochemical characteristics, field investigation, and geological structure distribution, a conceptual groundwater flow pattern affected by uplift structure is proposed, indicating that shallow phreatic water is blocked by the uplift structure and the flow direction is turned to the northwest, while high pressure artesian water is formed in the confined aquifers at the axis of the uplift structure.  相似文献   

2.
The present work was conducted in the Sinai Peninsula (1) to identify the recharge and flow characteristics and to evaluate the continuity of the Lower Cretaceous Nubian Sandstone aquifer; and (2) to provide information for the aquifer's rational appraisal. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. A considerable depletion in isotopic content (oxygen-18 and deuterium) and low d-excess values exist in the studied groundwater, reflecting the contribution of old meteoric water that recharged the aquifer in pluvial times. Modern recharge also occurs from precipitation that falls on the aquifer outcrops. The wide scatter of the data points around the two meteoric lines, the global meteoric water line (GMWL) and Mediterranean meteoric water line (MMWL), in the δ18O–δD diagram indicates considerable variation in recharge conditions (amount, altitude, temperature, air masses, distances from catchment, overland flow, etc.). The isotopic composition in the El-Bruk area is minimum (18O=–9.53‰), very close to the average value of the Western Desert Nubian Sandstone (18O=–10‰), where the local structural and lithologic conditions retard groundwater flow and the main bulk of water becomes noncyclic. The continuity of the aquifer in northern and central Sinai is evidenced by the isotopic similarity between samples taken from above and below the central Sinai Ragabet El-Naam fault, the distribution of potentiometric head, and hydrogeological cross sections. The combination of isotopic composition in terms of 18O and chemical composition in terms of TDS and salt contents is the basis for separating the studied groundwater into groups that reflect the recharge sources and isotopic and chemical modifications during flow. Electronic Publication  相似文献   

3.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

4.
Despite its limited aerial extent, the National Capital Territory (NCT) Delhi, India, has diversified geological and topographical setup. A geochemical assessment of prevailing conditions of aquifer underlying the NCT was attempted and further classified into different hydrogeochemical zones on the basis of statistical and analyses and its correlation with land use, geological and climatic setting. Mineral phase study and isotopic analyses were used for the verification of performed clustering. Saturation indices (SI) calculated using the geochemical modelling code PHREEQC were used to distinguish the characteristics of four zones, as saturation states of the water does not change abruptly. Four different hydrogeochemical zones were statistically identified in the area: (1) intermediate (land-use-change-impacted) recharge zone, (2) discharge (agriculture-impacted) zone, (3) recharge (ridge) zone, and (4) recharge floodplain (untreated-discharge-impacted) zone. The distinctiveness of hydro-geochemical zones was further verified using stable isotopic (2H and 18O) signature of these waters. GIS-based flow regime in association with long-term geochemical evidences implied that these zones are being affected by different problems; thus, it necessitates separate environmental measures for their management and conservation. The study suggested that in a diversified urban setup where the complex interactions between anthropogenic activities and normal geochemical processes are functioning, hydrogeochmical zoning based on the integration of various techniques could be the first step towards sketching out the groundwater management plan.  相似文献   

5.
The functioning of karst systems in the Tlemcen Mountains, Algeria, was studied using environmental isotopic and chemical parameters. The weakly enriched values of 18O suggest a fast infiltration of water through the karst systems. The deuterium (2H) excess in groundwater and tritium (3H) in precipitation show that the region is subjected to Mediterranean and Atlantic influences with a predominance of the former. The isotopic gradient, in combination with topographic and geologic criteria, allows the recharge areas of the main karst systems to be estimated. The results of 13C, 14C and 3H analysis show that the majority of present waters come from perched systems and mixture waters influenced by three clusters (“ante-thermonuclear” waters, “thermonuclear” waters, and present waters) that generally emerge from semi-confined systems. The oldest waters are relatively rare and are stored in deeply confined systems. These results are consistent with the hydrochemical and the hydrogeological findings. The results have important implications in groundwater protection.  相似文献   

6.
Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1?×?105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ronde formations) are widely used for water abstraction. The mean decline over recent decades has been 0.6 m year?1. At present day, abstraction wells are drying up, and base flow of rivers is reduced. At the eastern part of CRBG, the Moscow sub-basin on the Idaho/Washington State border can be found. Although a thick poorly permeable clay layer exists on top of the basalt aquifer, groundwater level dynamics suggest that groundwater recharge occurs at certain locations. A set of wells and springs has been monitored bi-weekly for 9 months for δ18O and δ2H. Large isotopic fluctuations and d-excess values close to the meteoric water line in some wells are indicating that recharge occurs at the granite/basalt interface through lateral flow paths in and below the clay. A soil moisture routing (SMR) model showed that most recharge occurs on the granitic mountains. The basaltic aquifer receives recharge from these sedimentary zones around the granite/basalt interface. The identification of these types of areas is of major importance for future managed-aquifer recharge solutions to solve problems of groundwater depletion.  相似文献   

7.
The groundwater flow pattern of the western part of the Guarani Aquifer System (GAS), Brazil, is characterized by three regional recharge areas in the north, and a potentiometric divide in the south, which trends north–south approximately. Groundwater flow is radial from these regional recharge areas toward the center of Paraná Sedimentary Basin and toward the western outcrop areas at the border of the Pantanal Matogrossense, because of the potentiometric divide. The isotopic composition of GAS groundwater leads to understanding the paleoclimatic conditions in the regional recharge areas. The δ18O and δ2H isotopic ratios of GAS groundwaters vary, respectively, from –9.1 to –4.8‰ V-SMOW and –58.4 to –21.7‰ V-SMOW. In the recharge zones, enriched δ18O values are observed, while in the confined zone lighter δ18O values are observed. These suggest that climatic conditions were 10°C cooler than the present during the recharge of these waters. The δ13C ratios in groundwater of GAS, in the study area, vary from –19.5 to –6.5‰ VPDB, increasing along the regional flow lines toward the confined zone. This variation is related to dissolution of carbonate cement in the sandstones.  相似文献   

8.
The distribution of 18O and 2H in various water sources indicates that groundwater recharge is due to local rainfall occurring within the basins. Groundwater recharge takes place under a bypass flow mechanism and matrix diffuse flow and is 3% and 2% of the long-term mean annual rainfall of 550 mm for the Makutapora and Hombolo basins, respectively. Chloride mass balance indicates that 60% and 40% of the total groundwater recharge takes place through macropores and matrix flow, respectively. Sporadic variations in 18O, 2H and chloride among adjacent boreholes suggest existence of a discrete fractured aquifer and/or dominance of local recharge. The relationship between δ2H and chloride indicates that groundwater salinization is due to the leaching of surficial and soil salts during high intensity rainfall, which causes high surface runoff and flash floods. It has been concluded that the isotopic and chemical character of groundwater in fractured semi-arid areas may provide the most effective complementary means of groundwater recharge assessment and therefore is very useful in the management of the water resources.  相似文献   

9.
This research aims to evaluate the groundwater resources of Paleogene aquifer in the Upper Jazireh area (Syria), in terms of chemical water type, recharge zones and water ages. The results show that the main recharge zones for the Paleogene aquifer range between 650 and 900 m a.s.l., which coincide with the outcrop of the karstified limestone in the Mardin uplift. The chemical and isotopic behaviors of groundwater, together with radiometric 14C reflect the existence of three different groundwater groups: (1) the fresh and cold water, percolating in short and shallow flow paths, for which the main replenishment processes are recent; (2) the brackish and thermal water containing certain amounts of H2S gas, that percolate in longer and deeper flow paths, for which the main replenishment processes occurred during the palaeoclimatic humid conditions of Pleistocene time, placed at 10–18 Ka BP; (3) the brackish and admixed thermal groundwater with intermediate 14C age, which seems to be formed as a result of mixing between the previous two groups.  相似文献   

10.
Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Electronic Publication  相似文献   

11.
Younger groundwater found in some Omani aquifers is a result of recent recharge from cyclonic and storm events [Weyhenmeyer et al. (Science 287:842–845, 2000); Young et al. (J Appl Geophys 57:43–61, 2004)]. The analysis of the meteorological data in Oman indicates an anomalous rainfall on a decadal interval whereas cyclones frequency is expected to increase due to global climatic changes. The cyclone Gonu has severely struck the eastern Omani coasts in 2007 resulting in devastating floods. Huge volume of water (3,672 mm3) spread over the coastal plain calling for an assessment of potential groundwater recharge subsequent to this event. The present study evaluates groundwater recharge with respect to Gonu 2007 to assess the potential of recharge induced by such cyclones in the arid zones. The hydrographs of several piezometers sited along the coastal plain in Muscat Province have been studied and variation in water table rise has been analyzed. Significant water table rise is indicated for areas with geological and structural settings favoring rapid infiltration of water yielding considerable groundwater mound, whereas piezometers located in less favorable zones show minimum rise of water table. However, soon after the floods the aquifer hydrodynamics has readjusted to attain equilibrium and the groundwater mound dissipated. The cumulative rise of the water table on an areal extent does not exceed a few centimeters indicating lesser volume of recharge. Comparatively, recharge from frequent precipitation along favorable zones produces more significant recharge compared with cyclonic events where surface water residence time is shorter to allow for efficient infiltration.  相似文献   

12.
The stable isotopic characteristics were used together with the total chloride to assess changes in groundwater from recharge zones into the carbonate aquifer in an arid environment. The aquifer under study represents a major source of groundwater and thermal springs in Al-Ain city, which are located at the northern part of Jabal Hafit in the United Arab Emirates (UAE). The relationship between oxygen and hydrogen isotopic composition of groundwater is established and is described by δD?=?2.2δ18O???9.96. The lower slope and y-intercept of groundwater samples relative to the local meteoric waterline suggests that the isotopic enrichment is due to the evaporation of shallow groundwater after recharge occurs. The majority of the shallow groundwater samples have a negative deuterium excess (d-excess) which might be ascribed to high a degree of evaporation, while most of the groundwater samples from deep wells, have a positive value of d-excess which may be related to a low degree of evaporation. The δ18O values of the thermal waters suggest enrichment towards δ18O of the carbonate rocks because of the exchange with oxygen at higher temperatures. A possible mixing between thermal or hot water and shallow groundwater is evident in some samples as reflected by δD vs. Cl and d-excess vs. δ18O plots.  相似文献   

13.
The Middle Awash basin is an arid region in Ethiopia where surface waters are scarce and local communities are dependent on groundwater resources for water supply. The complex hydrogeological system of this basin has been conceptualized. Multivariate statistical analysis of hydrochemical variables and water isotopes were used to study the rock?Cwater interaction, geochemical reaction processes and the hydrological link between aquifers. Groundwaters from aquifers of the high-rainfall plateau bounding the rift are slightly mineralized, as well as depleted in ??18O and ??D, and contain 3H above 0.8?TU. This suggests a low degree of rock?Cwater interaction and that groundwater is under recharge from heavy rain that falls on surrounding highlands. On the other hand, groundwaters from aquifers of the rift floor are highly mineralized and show slight enrichment in ??18O and ??D with positive oxygen shift, but contain 3H below 0.8?TU. The positive oxygen shift in rift floor groundwaters may be caused by the isotopic exchange of oxygen between groundwater and aquifer materials during rock?Cwater interaction, whereas the low 3H content could be due to the decay of tritium along relatively long flow paths. The approach utilized in this study may be applicable to understanding hydrogeochemical processes in other complex volcanic terrains.  相似文献   

14.
A comprehensive hydrogeochemical study was carried out in the Paleozoic Basses-Laurentides sedimentary rock aquifer system in Québec over a 1500 km2 study area. Groundwater samples were collected at 153 sites, characterizing all geological and hydrogeological units to a maximum depth of 140 m. Groundwater was analyzed for major, minor and trace inorganic constituents, stable isotopes δ 2H, δ 18O, and δ 13C of dissolved inorganic carbon (DIC), and some samples were analyzed for 3H, and 14C of DIC. The regional distribution of groundwater types shows that the hydrogeological conditions exert a dominant control on the major ions chemistry of groundwater. Preferential recharge areas are characterized by tritiated Ca-Mg-HCO3 groundwater, and confined conditions by submodern Na-HCO3 and Na-Cl groundwater types. Two groundwater end-members are identified in the aquifer system, modern meteoric water and Pleistocene Champlain Sea water. The region displays significant variations of groundwater geochemistry and quality controlled by glaciation, Champlain Sea invasion, lithological rock diversity, and flow system scales. This situation leads to varied groundwater types and origins within a restricted area.  相似文献   

15.
Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17–60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9–45.9 hm3 year?1) is in agreement with the average recharged groundwater (44.7 hm3 year?1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.  相似文献   

16.
Major element concentrations, stable (δ18O and δ2H) and radiogenic (3H, 14C) isotopes determined in groundwater provided useful initial tracers for understanding the processes that control groundwater mineralization and identifying recharge sources in semi-arid Cherichira basin (central Tunisia).Chemical data based on the chemistry of several major ions has revealed that the main sources of salinity in the groundwaters are related to the water–rock interaction such as the dissolution of evaporitic and carbonate minerals and some reactions with silicate and feldspar minerals.The stable isotope compositions provide evidence that groundwaters are derived from recent recharge. The δ18O and δ2H relationships implied rapid infiltration during recharge to both the Oligocene and Quaternary aquifers, with only limited evaporation occurring in the Quaternary aquifer.Chemical and isotopic signatures of the reservoir waters show large seasonal evolution and differ clearly from those of groundwaters.Tritium data support the existence of recent recharge in Quaternary groundwaters. But, the low tritium values in Oligocene groundwaters are justified by the existence of clay lenses which limit the infiltration of meteoric water in the unsaturated zone and prolong the groundwater residence time.Carbon-14 activities confirm that groundwaters are recharged from the surface runoff coming from precipitation.  相似文献   

17.
The objective of this study was to identify geochemical processes and Quaternary geological events responsible for the variations in groundwater geochemistry observed in a sedimentary rock aquifer system, including brackish to saline groundwater. Inorganic constituents and environmental isotopes were analyzed for 146 groundwater samples. Dissolution of carbonates dominates in recharge areas, resulting in Ca-, Mg-HCO3 groundwater. Further along flow paths, under confined conditions, Ca2+–Na+ ion exchange causes groundwater evolution to Na-HCO3 type. Na-Cl groundwater is also found and it falls on a seawater mixing line. Using conservative tracers, Cl and Br, the original Champlain Sea water is shown to have been, in the region, a mixture of about 34% seawater and 66% freshwater, a composition still retained by some groundwater. Na-Cl groundwater thus results from mixing with former Champlain Sea water and also from solute diffusion from overlying marine clay. The system is thus found to be at different stages of desalinization, from the original Champlain Sea water still present in hydraulically stagnant areas of the aquifer to fully flushed conditions in parts, where more flow occurs, especially in recharge zones. The geochemical processes are integrated within the hydrogeological context to produce a conceptual geochemical evolution model for groundwater of the aquifer system.  相似文献   

18.
《Applied Geochemistry》2005,20(11):2063-2081
This paper deals with chemical and isotope analyses of 21 springs, which were monitored 3 times in the course of 2001; the monitoring program was focused on the groundwater of the Gran Sasso carbonate karst aquifer (Central Italy), typical of the mountainous Mediterranean area.Based on the hydrogeological setting of the study area, 6 groups of springs with different groundwater circulation patterns were distinguished. The hydrogeochemistry of their main components provided additional information about groundwater flowpaths, confirming the proposed classification. The spatial distribution of their ion concentrations validated the assumptions underlying the hydrogeological conceptual model, showing diverging groundwater flowpaths from the core to the boundaries of the aquifer. Geochemical modelling and saturation index computation elucidated water–carbonate rock interaction, contribution by alluvial aquifers at the karst aquifer boundaries, as well as impacts of human activities.The analysis of 18O/16O and 2H/H values and their spatial distribution in the aquifer substantiated the hydrogeology-based classification of 6 groups of springs, making it possible to trace back groundwater recharge areas based on mean isotope elevations; the latter were calculated by using two rain monitoring stations. 87Sr/86Sr analyses showed seasonal changes in many springs: in winter–spring, the changes are due to inflow of new recharge water, infiltrating into younger rocks and thus increasing 87Sr/86Sr values; in summer–autumn, when there is no recharge and spring discharge declines, changes are due to base flow groundwater circulating in more ancient rocks, with a subsequent drop in 87Sr/86Sr values.The results of this study stress the contribution that spatio-temporal isotope monitoring can give to the definition of groundwater flowpaths and hydrodynamics in fissured and karst aquifers, taking into account their hydrogeological and hydrogeochemical setting.  相似文献   

19.
This paper gives an account of the assessment and quantification of the water balance and the hydrogeological processes related to lake–groundwater interaction in the Pampa Plain by using hydrogeochemical, isotopic and flow numerical modeling techniques. La Salada is a permanent shallow lake, with an area of 5.8 km2, located on the SE of Buenos Aires Province. A total of 29 lake water samples and 15 groundwater samples were collected for both hydrochemical analysis and environmental stable isotope determination. Water table depths were measured in wells closed to the lake. Groundwater samples appear grouped on the Local Meteoric Water Line, suggesting a well-mixed system and that rainfall is the main recharge source to the aquifer. Water evaporation process within La Salada is also corroborated by its isotopic composition. The model that best adjusts to La Salada Lake hydrochemical processes includes evaporation from groundwater, calcite precipitation with CO2 release and cationic exchange. The annual water balance terms for the lake basin indicates for each hydrological component the following values: 1.16 E08 m3 rainfall, 8.15 E07 m3 evapotranspiration, 1.90 E06 m3 runoff, 1.55 E07 m3 groundwater recharge, 6.01 E06 m3 groundwater discharge to the lake, 9.54 E06 m3 groundwater discharge to the river, 5.00 E05 m3 urban extraction and 4.90 E06 m3 lake evaporation. Integrated analysis of hydrochemical and isotopic information helped to calibrate the groundwater flow model, to validate the conceptual model and to quantitatively assess the basin water balance.  相似文献   

20.
Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55–70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号