首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new separation and preconcentration technique based on coprecipitation of Cu(II) and Ni(II) ions by the aid of Mo(VI)/di‐tert‐butyl{methylenebis[5‐(chlorobenzyl)‐4H‐1,2,4‐triazol‐3,4‐diyl]}biscarbamate (BUMECTAC) precipitate has been established. The Mo(VI)/BUMECTAC precipitate was dissolved by concentrated HNO3 and the solution was completed to 5.0 mL with distilled/deionized water. The levels of the analyte ions were determined by flame atomic absorption spectrometer. The effects of experimental conditions like HNO3 concentration, amount of BUMECTAC and Mo(VI), sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of analyte ions. The preconcentration factors were found to be 40 for Cu(II) and 100 for Ni(II) ions. The detection limits for Cu(II) and Ni(II) ions based on 3σ (N:10) were 0.43 and 0.70 µg L?1, respectively. The relative standard deviations were found to be lower than 4.0% for both analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of two certified reference materials (Environment Canada TM‐25.3 and CRM‐SA‐C Sandy Soil C). The procedure was successfully applied to sea water and stream water as liquid samples and baby food as solid sample in order to determine the levels of Cu(II) and Ni(II) ions.  相似文献   

2.
A multi‐element ion‐pair extraction method was described for the preconcentration of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) ions in environmental samples prior to their determinations by flame atomic absorption spectrometry (FAAS). As an ion‐pair ligand 2‐(4‐methoxybenzoyl)‐N′‐benzylidene‐3‐(4‐methoxyphenyl)‐3‐oxo‐N‐phenyl‐propono hydrazide (MBMP) was used. Some analytical parameters such as pH of sample solution, amount of MBMP, shaking time, sample volume, and type of counter ion were investigated to establish optimum experimental conditions. No interferences due to major components and some metal ions of the samples were observed. The detection limits of the proposed method were found in the range of 0.33–0.9 µg L?1 for the analyte ions. Recoveries were found to be higher than 95% and the relative standard deviation (RSD) was less than 4%. The accuracy of the procedure was estimated by analyzing the two certified reference materials, LGC6019 river water and RTC‐CRM044 soil. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

3.
The coprecipitation method is widely used for the preconcentration of trace metal ions prior to their determination by flame atomic absorption spectrometry (FAAS). A simple and sensitive method based on coprecipitation of Fe(III) and Ni(II) ions with Cu(II)‐4‐(2‐pyridylazo)‐resorcinol was developed. The analytical parameters including pH, amount of copper (II), amount of reagent, sample volume, etc., were examined. It was found that the metal ions studied were quantitatively coprecipitated in the pH range of 5.0–6.5. The detection limits (DL) (n = 10, 3s/b) were found to be 0.68 µg L?1 for Fe(III) and 0.43 µg L?1 for Ni(II) and the relative standard deviations (RSD) were ≤4.0%. The proposed method was validated by the analysis of three certified reference materials (TMDA 54.4 fortified lake water, SRM 1568a rice flour, and GBW07605 tea) and recovery tests. The method was successfully applied to sea water, lake water, and various food samples.  相似文献   

4.
An on‐line solid phase extraction method for the preconcentration and determination of Cu(II) by flame atomic absorption spectrometry has been described. The procedure is based on the retention of Cu(II) ions at pH 6.0 on a minicolumn packed with Amberlite XAD‐1180 resin impregnated with chrome azurol S. After preconcentration, Cu(II) ions adsorbed on the impregnated resin were eluted by 1 mol L?1 HNO3 solution. Several parameters, such as pH, type of eluent, flow rates of sample and eluent solutions, amount of resin were evaluated. At optimized conditions, for 3.5 min of preconcentration time, the system achieved a detection limit of 1.0 µg L?1, and a relative standard deviation of 1.2% at 0.2 µg mL?1 copper. An enrichment factor of 56‐fold was obtained with respect to the copper determination. The proposed method was successfully validated by the analysis of standard reference material (TMDA 54.4 lake water) and recovery studies. The method was applied to the preconcentration of Cu(II) in natural water samples.  相似文献   

5.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   

6.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

7.
This work describes the modification of silica gel with dimethylglyoxime, in order to prepare an effective sorbent for the preconcentration and determination of copper. The sorption capacity of dimethylglyoxime‐modified silica‐gel (DMGMS) was 71.37 mg g–1 and the optimum pH for the quantitative recovery of copper was found to be 5.0. The optimum flow rate, sorbent amount, and sample volume were 1 mL min–1, 300 mg, and 50 mL, respectively. 10 mL of 0.1 mol L–1 HCl was the most suitable eluent. The detection limit of copper was 6.0 ng mL–1. The recommended method, for the determination of copper, is simple and reliable, without any notable matrix effect and can be successfully applied to environmental water samples. Copper recovery in the range from 99–100% was obtained from seawater and thermal spring water using this method. The method was applied to standard reference materials, NIST‐1515 (apple leaves) and NIST‐1643e (simulated fresh water), for the determination of copper and the results were in good agreement with certified values.  相似文献   

8.
The present paper proposes the application of multiwalled carbon nanotubes (MWCNTs) as a solid adsorbent for selective separation/preconcentration of silver(I) in water samples prior to flame atomic absorption spectrometry. The procedure is based on the solid phase extraction of Ag(I)–2‐mercaptobenzothiazole chelate on MWCNTs. The elution step is carried out with 5 mL of 2 mol L?1 HNO3 in acetone solution at a flow rate of 1.0 mL min?1. The influences of the various analytical parameters including pH of the solution, eluent type, sample volume, flow rates of eluent, matrix ions were investigated for optimization of the presented procedure. Tests of addition/recovery for analyte ion in real samples were performed with satisfactory results. Preconcentration factor and limit of detection for Ag(I) were 160 and 0.21 µg L?1, respectively. The synthesized MWCNT exhibited excellent stability in eluent solution and its adsorption capacity was 5.4 mg of silver per gram of sorbent. The proposed method was successfully applied to trace silver determination in a variety of environmental water samples.  相似文献   

9.
A method for the determination of nickel in water was developed. The procedure involves preconcentration of nickel by using dispersive liquid–liquid microextraction. The Ni(II) ions were extracted in chloroform in the form of complex with the reagent 2‐(2′‐benzothiazolylazo)‐p‐cresol. Ethanol was used as the disperser solvent. After injection of the extracting mixture in a solution of nickel, a cloudy mixture was observed. A quick centrifugation induces phase separation and thus the settling of rich phase. The nickel content in the rich phase is measured by flame atomic absorption spectrometry. Under optimal conditions, the limit of detection and quantification obtained were 1.4 and 4.7 µg L?1, respectively. Some parameters used to characterize preconcentration systems, such as enrichment factor and consumption index were calculated and resulted in 29 and 0.34 mL, respectively. After optimization of variables and determination of analytical characteristics, the method was used for the analysis of certified reference materials (BCR‐713: wastewater, effluent and BCR‐414: plankton) and real water samples.  相似文献   

10.
A rapid and sensitive method for the determination of trace levels cadmium in water samples by flame atomic absorption spectrometry was developed. It is based on the online sorption of Cd(II) ions on a microcolumn packed with HCl treated bamboo charcoal. In a pH range of 5.0–7.5, Cd(II) ions were effectively retained on the microcolumn, which exhibited fast kinetics, permitting the use of high sample flow rates up to at least 12.8 mL/min without the loss of retention efficiency. The retained Cd(II) ions were quantitatively eluted with HCl (2.0 mol/L) for an online determination. With a preconcentration time of 80 s at a sample loading flow rate of 8.6 mL/min, a sensitivity enhancement factor of 63 was obtained compared with the slope of the linear portion of the calibration curves before and after preconcentration. The calibration graph using the preconcentration system for cadmium was linear with a correlation coefficient of 0.9997, at levels from 1–40 ng/mL. The precision (RSD) for 11 replicate measurements were 3.2% for the determination of 5 ng/mL Cd(II) and 1.8% for 20 ng/mL Cd(II), respectively, and the detection limit (3s) was 0.36 ng/mL. The accuracy was assessed through the determination of a certified reference material, and also through recovery experiments.  相似文献   

11.
In this study, a new sorbent is synthesized using surface imprinting technique. Cu(II)‐imprinted multiwalled carbon nanotube sorbent (Cu(II)‐IMWCNT) is used as the solid phase in the solid‐phase extraction method. After the preconcentration procedure, Cu(II) ions are determined by high‐resolution continuum source atomic absorption spectrometry. A total of 0.1 mol L?1 ethylenediaminetetraacetic acid (EDTA) is used to remove Cu(II) ions from the sorbent surface. The optimum experimental conditions for effective preconcentration of Cu(II), parameters such as pH, eluent type and concentration, flow rate, sample volume, sorbent capacity, and selectivity are investigated. The synthesized solid phase is characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The maximum adsorption capacities of Cu(II)‐IMWCNT and non‐imprinted solid phases are 270.3 and 14.3 mg g?1 at pH 5, respectively. Under optimum experimental conditions for Cu(II) ions, the limit of detection is 0.07 μg L?1 and preconcentration factor is 40. In addition, it is determined to be reusable without significant decrease in recovery values up to 100 adsorption–desorption cycles. Cu(II)‐IMWCNT have a high stability. To check the accuracy of the developed method, certified reference materials, and water samples are analyzed with satisfactory analytical results.  相似文献   

12.
This work presents a solid phase extraction (SPE) method for simultaneous preconcentration of trace elements in water samples prior to their ICP-OES determination. Dowex 50W-x8 and Chelex-100 resins were used as SPE sorbent materials for preconcentration of trace Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn. The optimum sample pH, eluent concentration and sample flow rates were found to 6, 3.0 mol L−1 and 3.0 mL min−1, respectively. In terms of multi-element preconcentration capabilities, Dowex 50W-x8 appeared to be a better sorbent. The recoveries for all the tested analytes were >95%. However, Chelex-100 showed a better performance in terms of recovery (>95%) towards Cu, Fe and Zn. Under optimized conditions using Dowex 50W-x8, the relative standard deviations for different metals were <3%. The limits of detection and limits of quantification ranged from 0.01–0.39 μg L−1 and 0.05–0.1.3 μg L−1, respectively. The accuracy of the preconcentration method was confirmed by spike recovery test and the analysis of certified reference materials. The SPE method was applied for preconcentration of the analyte ions in tap water, bottled water and wastewater samples.  相似文献   

13.
Interest in preconcentration techniques for the determination of metals at ultratrace levels still continues increasingly because of some disadvantages of flameless atomic absorption spectrometry and the high costs of other sensitive methods in compared to flame atomic absorption spectrometry (FAAS). Among preconcentration techniques, solid‐phase extraction is the most popular because of a number of advantages. In this work, thiol‐containing sulfonamide resin was synthesized, characterized, and applied as a new sorption material for solid phase extraction and determination of lead in natural water samples. The optimization of experimental conditions was performed using the parameters including pH, contact time, and volumes of initial and elution solutions. After preconcentration procedure, FAAS was used for determinations. The synthesized resin exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent as well as high sorption capacity. Consequently, 280‐fold improvement in the sensitivity of analytical scheme was achieved by combining the slotted tube atom trap‐atomic absorption spectrometry (STAT‐FAAS) and the developed preconcentration method. The limit of detection was found to be 0.15 ng mL?1. The Pb2+ concentrations in the studied water samples were found to be in the range of 0.9–6.7 ng mL?1.  相似文献   

14.
Freeze‐coring and bulk sampling are routine methods used to sample subsurface spawning gravel under shallow water. Both methods have limitations. Freeze‐coring is not believed to representatively sample coarse grain sizes and the sample volumes are relatively small. Conversely, when bulk sampling, even within an enclosure, some fine sediment is suspended and washed away from the sample. This paper assesses the biases in sampling performance between the two methods and determines whether the loss of fines that occurs when bulk sampling could be predicted and thus corrected for. At six riffles the spawning substrate was sampled under approximately 50 cm of water with a bulk sample and three adjacent freeze‐cores. For each riffle, data from the two samples were combined using the method of Fripp and Diplas (1993) and the resultant composite sample was compared with the original freeze‐core and bulk samples to assess the relative precision and biases of the two techniques. On average, the D50 of the bulk samples was 4 mm larger and a one‐third loss of the <2 mm fraction occurred compared with the composite samples. In contrast, freeze‐core samples contain on average 32% more sediment >16 mm compared with composite samples. Based on six samples, taken from six riffles, the amount of sediment finer than 0·5 mm lost using our bulk sampling technique with an enclosure appears to be predictable and correctable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A simple and reliable method for rapid and selective extraction and determination of trace levels of Ni2+ and Mn2+ was developed by ionic liquid (IL) based dispersive liquid–liquid microextraction coupled to flame atomic absorption spectrometry (FAAS) detection. The proposed method was successfully applied to the preconcentration and determination of nickel and manganese in soil, vegetable, and water samples. After preconcentration, the settled IL‐phase was dissolved in 100 µL of ethanol and aspirated into the FAAS using a home‐made microsample introduction system. Injection of 50 µL of each analyte into an air–acetylene flame provided very sensitive spike‐like and reproducible signals. Effective parameters such as pH, amount of IL, volume of the disperser solvent, concentration of the chelating agent, and effect of salt concentration were inspected by a (25‐1) fractional factorial design to identify the most important parameters and their interactions. Under optimum conditions, preconcentration of 10 mL sample solution permitted the detection of 0.93 µg L?1 Ni2+ and 0.52 µg L?1 Mn2+ with enrichment factors 77.2 and 82.6 for Ni2+ and Mn2+, respectively. The accuracy of the procedure was evaluated by analysis of a certified reference material (CRM TMDW‐500, drinking water).  相似文献   

16.
A novel, simple method based on magnetic separation was developed for analytical purposes. In this method, N‐methyl‐D‐glucamine (NMDG) modified magnetic microparticles that were synthesized by using the sol‐gel method were used for the selective extraction and preconcentration of boron from aqueous solutions. This method combines the simplicity and selectivity of solvent extraction with the easy separation of magnetic microparticles from a solution with a magnet without any preliminary filtration step. The structure of the prepared γ‐Fe2O3‐SiO2‐NMDG (magnetic sorbent) composites were characterized by using X‐ray diffraction (XRD), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR). The influence of different parameters on the sorbent capacity, such as the sorption/desorption of boron, magnetic sorbent dosage, pH, equilibrium time, type, and amount of stripping solution, were evaluated by using the magnetic sorbent. Any equilibrium pH greater than 6 can be used for sorption. Desorption from the sorbent was carried out by using 1.0 M HCl. The sorption and desorption efficiency of the γ‐Fe2O3‐SiO2‐NMDG was found as 92.5 ± 0.5% and 99.8 ± 6%, respectively.  相似文献   

17.
In the present article, a procedure for the simultaneous separation and preconcentration of trace amounts of cadmium and zinc is proposed. It is based on the adsorption of cadmium and zinc ions onto a column of Amberlite XAD‐4 resin loaded with aluminon reagent. Cadmium and zinc ions are quantitatively retained on the column in the pH range from 6.5–7.5, at a flow rate of 2 mL min–1. The cadmium and zinc ions are eluted with 5.0 mL of 5 mol L–1 HNO3 solution. Cadmium and zinc are measured by flame atomic absorption spectrometry (FAAS). In the present case, 0.1 μg of cadmium and 0.5 μg of zinc can be concentrated in the column from 1000 mL of aqueous sample, where their concentrations are as low as 0.1 and 0.5 ng mL–1, respectively. The relative standard deviations, for seven replicated determinations of 1.0 μg mL–1 of cadmium and zinc, are 1.2 and 1.1%, respectively. The detection limits for cadmium and zinc in the original solution are 0.02 and 0.11 ng mL–1, respectively. The interference of a large number of anions and cations has been studied and the optimized conditions are utilized for the determination of trace amounts of cadmium and zinc in different environmental and standard samples.  相似文献   

18.
Fulvic acids of different origin, spray deposited on polished silicon after dissolution in high‐purity water without any additives, were analysed by time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) in combination with oblique 24...36 keV SF5+ ion bombardment. The observed, highly reproducible mass spectra cover more than five orders of magnitude in dynamic range, without background subtraction. Apart from lines due to atomic ions and low‐mass ion fragments, the mass spectra exhibit broad maxima between m/z 200...350, mainly due to a beat‐like superposition of lines at every single mass number, up to at least m/z 400. In the negative ion spectra the beats have a spacing of m/z 14, corresponding to a CH2‐unit. The high‐mass tails of the spectra extend well beyond m/z 5000, with similar slopes in the positive and the negative ion mass spectra. The negative spectra appear to be less affected by fragmentation products than the positive spectra. Fulvic acids (FAs) of different origin show distinctly different spectra, with mean masses ranging between m/z ≈ 450 and 580 (for a low‐mass cut‐off m/z 150). To further verify the ability of TOF‐SIMS to detect molecules and clusters with masses significantly above the maxima of the FA spectra, samples of glycyrrhizic acid (GA, as GA ammonium salt with molecular weight 840) were also analysed. Parent ions as well as multimers (GA)n were observed as positive and negative ions, up to n = 4 (m/z 3320). The results are compared with spectra recently obtained by other mass spectrometric techniques.  相似文献   

19.
A selective and sensitive method for the preconcentration, separation, and determination of palladium with flame atomic absorption spectrometry using 4,15‐bis[(4‐methylphenyl)sulfonyl]‐20,21‐dinitro‐2,3,4,5,6,7,9,10,12,13,14,15,16,17‐tetradecahydro‐8,11‐ethano‐1,18,4,8,11,15‐benzodioxa tetraaza cycloicosine (TNACIN) on XAD‐2010 was developed. TNACIN–Pd(II) complex formed acidic aqueous solution (0.075–0.100 M HNO3) was accumulated on XAD‐2010 and then eluted with 1 M HCl in acetone. The effects of some analytical parameters including pH, TNACIN amount, sample volume, eluent type, and concentration, sample flow rate and matrix ions were studied for optimization of the method. Detection limit and precision were calculated for Pd(II). This method was also verified with CRM and internal standard, and satisfactory results were obtained.  相似文献   

20.
A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag+ and Pd2+ in various samples. After complexation with 2‐((2‐((1H‐benzo[d]imidazole‐2‐yl)methoxy)phenoxy)methyl)‐1H‐benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X‐114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0·10–5 mol/L BIMPI and 0.036% (w/v) Triton X‐114), calibration graphs were linear in the range of 28.0–430.0 μg/L and 57.0–720.0 μg/L with detection limits of 10.0 and 25.0 μg/L for Ag+ and Pd2+, respectively. The enrichment factors were 35.0 and 28.0 for Ag+ and Pd2+, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号