首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the dynamic characteristics and seismic behavior of prefabricated steel stairs in a full‐scale five‐story building shake table test program. The test building was subjected to a suite of earthquake input motions and low‐amplitude white noise base excitations first, while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. This paper presents the modal characteristics of the stairs identified using the data recorded from white noise base excitation tests as well as the physical and measured responses of the stairs from the earthquake tests. The observed damage to the stairs is categorized into three distinct damage states and is correlated with the interstory drift demands of the building. These shake table tests highlight the seismic vulnerability of modern designed stair systems and in particular identifies as a key research need the importance of improving the deformability of flight‐to‐building connections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A hypothetical 5‐storey prototype structure with reinforced concrete (RC) frame and unreinforced masonry (URM) wall is considered. The paper focuses on a shake‐table experiment conducted on a substructure of this prototype consisting of the middle bays of its first storey. A test structure is constructed to represent the selected substructure and the relationship between demand parameters of the test structure and those of the prototype structure is established using computational modelling. The dynamic properties of the test structure are determined using a number of preliminary tests before performing the shake‐table experiments. Based on these tests and results obtained from computational modelling of the test structure, the test ground motions and the sequence of shakings are determined. The results of the shake‐table tests in terms of the global and local responses and the effects of the URM infill wall on the structural behaviour and the dynamic properties of the RC test structure are presented. Finally, the test results are compared to analytical ones obtained from further computational modelling of the test structure subjected to the measured shake‐table accelerations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents the results of 56 large‐amplitude shake table tests of a 30% scale eight‐storey controlled rocking steel frame. No significant damage or residual deformations were observed after any of the tests. The frame had four possible configurations on the basis of combinations of two higher mode mitigation mechanisms. The first mitigation mechanism was formed by allowing the upper section of the frame to rock, so as to better control the mid‐height overturning moment. The second mitigation mechanism was formed by replacing the conventional first‐storey brace with a self‐centering energy dissipative (SCED) brace, so as to better control the base shear. The mechanisms had little effect during records where higher mode effects were not apparent, but they substantially reduced the shear and overturning moment envelopes, as well as the peak floor accelerations, during more demanding records. The reduction in storey shears led to similarly reduced brace force demands. Although the peak force demands in the columns were not reduced by as much as the frame overturning moments, using an upper rocking joint allowed the column demands to be estimated without the need to assume a lateral force distribution. The tests demonstrated that multiple force‐limiting mechanisms can be used to provide better control of peak seismic forces without excessive increases in drift demands, thus enabling more reliable capacity design. These results are expected to be widely applicable to structures where the peak seismic forces are significantly influenced by higher mode effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

9.
The concentrically braced frame (CBF) structure is one of the most efficient steel structural systems to resist earthquakes. This system can dissipate energy during earthquakes through braces, which are expected to yield in tension and buckle in compression, while all other elements such as columns, beams and connections are expected to behave elastically. In this paper, the performance of single‐storey CBFs is assessed with nonlinear time‐history analysis, where a robust numerical model that simulates the behaviour of shake table tests is developed. The numerical model of the brace element used in the analysis was calibrated using data measured in physical tests on brace members subjected to cyclic loading. The model is then validated by comparing predictions from nonlinear time‐history analysis to measured performance of brace members in full scale shake table tests. Furthermore, the sensitivity of the performance of the CBF to different earthquake ground motions is investigated by subjecting the CBF to eight ground motions that have been scaled to have similar displacement response spectra. The comparative assessments presented in this work indicate that these developed numerical models can accurately capture the salient features related to the seismic behaviour of CBFs. A good agreement is found between the performance of the numerical and physical models in terms of maximum displacement, base shear force, energy dissipated and the equivalent viscous damping. The energy dissipated and, more particular, the equivalent viscous damping, are important parameters required when developing an accurate displacement‐based design methodology for CBFs subjected to earthquake loading. In this study, a relatively good prediction of the equivalent viscous damping is obtained from the numerical model when compared with data measured during the shake table tests. However, it was found that already established equations to determine the equivalent viscous damping of CBFs may give closer values to those obtained from the physical tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The effectiveness of seismic isolation in protecting structural and non‐structural elements from damage has been assessed in an extensive programme of shaking‐table tests, carried out on four identical 1/3.3‐scale, two‐dimensional, reinforced concrete (R/C) frames. Four different isolation systems were considered, namely: (i) rubber‐based, (ii) steel‐based, (iii) shape memory alloy (SMA)‐based and (iv) hybrid, i.e. based on both SMA and steel components, isolation systems. This paper presents a comprehensive overview of the main results of the experimental tests on base‐isolated models, whose structural response is described through: (i) maximum base displacements; (ii) maximum interstorey drifts; (iii) maximum storey accelerations and (iv) maximum storey shear forces. The evolution of the fundamental frequency of vibration of the R/C frame during the tests is also described. The beneficial effects of using base isolation resulted in no or slight damage, under strong earthquakes, to both structural and non‐structural members, as well as to the internal content of the building. The comparison with the experimental results obtained in shaking‐table tests on similar fixed‐base models emphasizes these positive aspects. Finally, advantages and drawbacks related to the use of each isolation system are discussed in the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper examines higher mode effects in systems where the ductile mechanism for seismic design is the base moment‐rotation response. The modal properties of flexural and shear beams with uniform mass and elasticity and with a variable amount of base rotational restraint are derived. As the base fixity is released, the first mode becomes the rigid body rotation of the beam about the base, but the higher modes change much less, particularly for the shear beam model. Most response quantities that are of interest in the seismic design of typical mid‐rise buildings are controlled by the first two lateral modes, except at locations along the height where the second mode contributes little. However, the third and higher lateral modes are more significant for high‐rise buildings. Based on the theory of uniform cantilever shear beams, expressions are developed to avoid the need for a modal analysis to estimate the overturning moment, storey shear, and floor acceleration envelopes. Considering the measured response from the shake table testing of a large‐scale eight‐storey controlled rocking steel braced frame, the proposed expressions are shown to be of similar or better accuracy to a modified modal superposition technique, which combines the higher mode response from an elastic modal analysis with the response associated with achieving the maximum base overturning moment according to an inverted triangular load distribution. Because the proposed method uses only parameters that are available at the initial design stage, avoiding the analysis of a structural model, it is likely to be especially useful for preliminary design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the development, experimental testing, and numerical modelling of a new hybrid timber‐steel moment‐resisting connection that is designed to improve the seismic performance of mid‐rise heavy timber moment‐resisting frames (MRF). The connection detail incorporates specially designed replaceable steel links fastened to timber beams and columns using self‐tapping screws. Performance of the connection is verified through experimental testing of four 2/3 scale beam‐column connections. All 4 connection specimens met the acceptance criteria specified in the AISC 341‐10 provisions for steel moment frames and exhibit high strength, ductility, and energy dissipation capacity up to storey drifts exceeding 4%. All of the timber members and self‐tapping screw connections achieved their design objective, remaining entirely elastic throughout all tests and avoiding brittle modes of failure. To assess the global seismic performance of the newly developed connection in a mid‐rise building, a hybrid timber‐steel building using the proposed moment‐resisting connection is designed and modelled in OpenSees. To compare the seismic performance of the hybrid MRF with a conventional steel MRF, a prototype steel‐only building is also designed and modelled in OpenSees. The building models are subject to a suite of ground motions at design basis earthquake and maximum credible earthquake hazard levels using non‐linear time history analysis. Analytical results show that drifts and accelerations of the hybrid building are similar to a conventional steel building while the foundation forces are significantly reduced for the hybrid structure because of its lower seismic weight. The results of the experimental program and numerical analysis demonstrate the seismic performance of the proposed connection and the ability of the hybrid building to achieve comparable seismic performance to a conventional steel MRF.  相似文献   

14.
This paper presents an experimental investigation on the seismic response of medical equipment supported on wheels and/or casters. Two pieces of equipment were tested: a large ultrasound machine and a cart carrying smaller medical equipment. In the first phase, the resistance of the wheels and casters of the equipment was characterized through a controlled‐displacement procedure on the shake table. In the second phase, an extensive shake table test program was carried out to investigate the seismic response of the equipment. The input signals for the shake table tests included floor motions of a four‐story steel braced‐frame hospital designed to satisfy seismic requirements of a site in the Los Angeles area. The results of 96 shake table tests reported in this study include the seismic performance of the equipment under both unlocked and locked conditions, located on various floor levels of the building. It was observed that engaging the casters' locking mechanism does not necessarily decrease the relative displacement. The displacement response was sensitive to the excitation intensity and the orientation of the equipment with respect to the input excitation. Based on the experimental observations, appropriate structural engineering demand parameters associated with the relative displacement and relative velocity demands of the equipment are proposed and used to develop conditional probability curves. Finally, in an effort to extend the results of this experimental study to similar equipment on wheels/casters, the performance of a simple numerical model in predicting the peak seismic demands is evaluated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In low‐rise steel‐concrete composite structures, moment‐resisting frames can be designed to develop a ductile response in beam‐to‐column joints and column bases by activating flexural yielding of beams and end plates, shear yielding of column web panel zones and yielding of anchors. To evaluate the performance of these components under differing earthquake intensities, a series of pseudodynamic, quasistatic cyclic and vibration tests were carried out on a two‐storey two‐bay moment resisting structure. The performance‐based seismic design and control of these structures requires that stiffness degradation, strength deterioration and slip are properly modelled. In this context, compact hysteretic models can play a key role and must therefore be striven for. Nonetheless, relevant techniques, like nonlinear system identification, are far from representing standard and reliable tools for the dynamic characterization of full‐scale structural systems. With this objective in mind, we present a restoring force surface‐based technique applied to pseudodynamic test data, in view of the nonlinear identification of multistorey frames. The technique is developed by means of a parametric approach, where a time‐variant stiffness operator is coupled to a modified Bouc–Wen model that allows both for slip and for degradation in stiffness. Strength deterioration is indirectly taken into account too. We also show how model‐based parameters can be correlated to the damage process progressively observed both in the structure and in its components. Finally, the predictive capabilities of the identified model are highlighted. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The height of 101‐storey Shanghai World Financial Center Tower is 492m above ground making it possible the tallest building in the world when completed. Three parallel structural systems including mega‐frame structure, reinforced concrete and braced steel services core and outrigger trusses, are combined to resist vertical and lateral loads. The building could be classified as a vertically irregular structure due to a number of stiffened and transfer stories in the building. Complexities related to structural system layout are mainly exhibited in the design of services core, mega‐diagonals and outrigger trusses. According to Chinese Code, the height 190 m of the building clearly exceeds the stipulated maximum height of for a composite frame/reinforced concrete core building. The aspect ratio of height to width also exceeds the stipulated limit of 7 for seismic design intensity 7. A 1/50 scaled model is made and tested on shaking table under a series of one and two‐dimensional base excitations with gradually increasing acceleration amplitudes. This paper presents the dynamic characteristics, the seismic responses and the failure mechanism of the structure. The test results demonstrate that the structural system is a good solution to withstand earthquakes. The inter‐storey drift and the overall behaviour meet the requirements of Chinese Design Code. Furthermore, weak positions under seldom‐occurred earthquakes of seismic design intensity 8 are found based on the visible damages on the testing model, and some corresponding suggestions are proposed for the engineering design of the structure under extremely strong earthquake. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A seismic shaking‐table test performed on a one‐storey steel frame with an 8 ton RC floor slab was reproduced on a similar specimen by means of the pseudo‐dynamic (PsD) method. A satisfactory agreement of the results could only be achieved after recalibration of the theoretical mass in the PsD equation and proper inclusion in the PsD test input of the horizontal and pitching accelerations measured on the table. In the shaking‐table test, the spurious pitching motion produced a significant increase in the apparent damping that could be estimated as a function of the pitching dynamic flexibility of the system. Dynamic and PsD snap‐back tests were also performed to provide an additional check of the reliability of the PsD method. The spurious pitching motion of the shaking table should always be measured during the tests and reported as a mean to increase the reliability and usefulness of the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The damage of nonstructural components represents the largest contribution to the economic loss caused by an earthquake. Since nonstructural components are not amenable to traditional structural analysis, full-scale experimental testing is crucial to understand their behaviour under earthquake. For this reason, shaking table tests are performed to investigate the seismic behaviour of plasterboard partitions. A steel test frame is properly designed in order to simulate the seismic effects at a generic building storey. The tests are performed shaking the table simultaneously in both horizontal directions. To investigate a wide range of interstorey drift demand and seismic damage, the shakes are performed scaling the accelerograms at eleven different intensity levels. The tested plasterboard partitions from Siniat exhibit a good seismic behaviour, both in their own plane and out of plane, showing limited damage up to 1.1 % interstorey drift ratio. The correlation between the dynamic characteristics of the test setup and the recorded damage is evidenced. Finally, an interesting comparison between the experimental results and the analytical model is also performed.  相似文献   

20.
The paper deals with the proposal and the experimental validation of a novel dissipative bracing system for the seismic protection of structures; compared with other similar systems, it is characterized by smaller size and weight, which makes it easier to move and to install, as well as particularly suitable to be inserted in light‐framed structures (e.g. steel structures of industrial plants). The proposed system consists of an articulated quadrilateral with steel dissipaters inserted, to be connected by tendons to frame joints; the prototypes have been designed and realized for the seismic protection of a two‐storey, large‐scale, steel frame, specially designed for shaking‐table tests. The paper, after an illustration of the system, and of its design and behaviour, presents the shaking‐table tests carried out. The experimental results have fully validated the proposed system, showing its good performance in controlling the seismic response of framed structures. A numerical non‐linear model, set up and validated on the basis of the physical tests, has been used to help interpreting the experimental results, but also to perform parametrical studies for investigating the influence of the design parameters on the performance of the control system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号