首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When subjected to long‐period ground motions, high‐rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full‐scale substructure shaking table test to reproduce large floor responses of high‐rise buildings. The response at the top floor of a virtual 30‐story building model subjected to a synthesized long‐period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber‐and‐mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open‐loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H method are adopted to construct the controller. A numerical example is presented to illustrate the open‐loop IDCS algorithm and compare the performance of different methods of controller design. A series of full‐scale substructure shaking table tests are conducted in E‐Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber‐and‐mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
By means of a simplified three degrees of freedom model, seismic behavior of reinforced concrete bridge piers and foundations were evaluated based on pseudo‐dynamic (PsD) tests for cases where pier strengthening and foundation strengthening are implemented. In addition, analysis based on PsD test results was conducted to investigate the influence of pier strengthening on seismic damage to the foundation. The PsD tests and the analysis show that the foundation suffers increased hysteretic response when pier strengthening is applied. The results also show that the foundation strengthening can prevent foundation damage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the results of shaking table tests to ascertain the ultimate behavior of slender base‐isolated buildings and proposes a time history response analysis method, which can predict the ultimate behavior of base‐isolated buildings caused by buckling fracture in laminated rubber bearings. In the tests, a base‐isolated structure model weighing 192 kN supported by four lead rubber bearings is used. The experimental parameters are the aspect ratio of height‐to‐distance between the bearings and the shape of and the axial stress on the bearings. The test results indicate that the motion types of the superstructure at large input levels can be classified into three types: the sinking type; the uplift type; and the mixed type. These behaviors depend on the relationship between the static ultimate lateral uplifting force on the superstructure and the lateral restoring characteristics of the base‐isolated story. In the analysis method, bearing characteristics are represented by a macroscopic mechanical model that is expanded by adding an axial spring to an existing model. Nonlinear spring characteristics are used for its rotational, shear, and axial spring. The central difference method is applied to solve the equation of motion. To verify the validity of the method, simulation analysis of the shaking table tests are carried out. The results of the analysis agree well with the test results. The proposed model can express the buckling behavior of bearings in the large deformation range. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A moderate size earthquake of magnitude 5 occurred at Whagae‐Myun, Hadong‐Gun, Kyongsangnam‐Do, Korea on 4 July 1936. It caused severe damage to the buildings and other structures in Sang‐Gye‐Sa, a famous and beautiful Buddhist temple. A five‐storey stone pagoda was standing in front of Keumdang, the main building. The top component of the pagoda was tipped over and fell down to the ground during the earthquake. In order to have a quantitative estimate of the intensity of the earthquake, a full‐scale model was constructed through a rigorous verification process. The completed model was mounted on a shaking table and subjected to two kinds of dynamic test: exploratory test and fragility test. The exploratory test was performed with low intensity shaking. In the fragility test, the failure modes of the model were investigated while increasing the shaking intensity. The construction details of the model are described and test procedures are reported. Important relations between failure modes and characteristics of ground motion were obtained from the tests. The intensity of the 1936 earthquake was estimated from the examination of test results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
对土石坝振动台模型试验理论和技术进行系统阐述,提出基于原型和模型坝料静、动力特性试验的模型相似设计方法和不同强度地震动递进输入(白噪声微振-设计地震-校核地震-破坏试验)的振动试验方法。基于1g大型振动台和ng超重力离心机振动台设备性能现状,结合高土石坝的结构特点和动力试验相似模拟要求,对土石坝振动台模型试验的优势及局限进行深入讨论。结合已有的工程实践,对土石坝振动台模型试验在工程中的应用进行总结,并以某实际高面板堆石坝为例研究面板坝生命周期内经历多次地震情况下结构动力特性的演化规律。  相似文献   

6.
This paper reports a study for the seismic performance of one large‐scaled (1/15) model of 30‐story steel‐reinforced concrete frame‐concrete core wall mixed structure. The study was implemented by both shaking table tests, in which the similarity ratio for lateral and gravitational accelerations was kept to 1:1, and numerical nonlinear dynamic analysis. The test observations presented herein include story displacement, interstory drift, natural vibration periods, and final failure mode. The numerical analysis was performed to simulate the shaking table test procedure, and the numerically obtained responses were verified by the test results. On the basis of the numerical results, the progressions of structural stiffness, base shear, and overturning moment were investigated, and the distributions of base shear and overturning moment between frame and core wall were also discussed. The test demonstrates the seismic performance of the steel‐reinforced concrete frame‐core wall mixed structure and reveals the potential overturning failure mode for high rise structures. The nonlinear analysis results indicate that the peripheral frames could take more shear forces after core wall damaged under severe earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The effects of damping in various laminated rubber bearings (LRB) on the seismic response of a ?‐scale isolated test structure are investigated by shaking table tests and seismic response analyses. A series of shaking table tests of the structure were performed for a fixed base design and for a base isolation design. Two different types of LRB were used: natural rubber bearings (NRB) and lead rubber bearings (LLRB). Three different designs for the LLRB were tested; each design had a different diameter of lead plug, and thus, different damping values. Artificial time histories of peak ground acceleration 0.4g were used in both the tests and the analyses. In both shaking table tests and analyses, as expected, the acceleration responses of the seismically isolated test structure were considerably reduced. However, the shear displacement at the isolators was increased. To reduce the shear displacement in the isolators, the diameter of the lead plug in the LLRB had to be enlarged to increase isolator damping by more than 24%. This caused the isolator stiffness to increase, and resulted in amplifying the floor acceleration response spectra of the isolated test structure in the higher frequency ranges with a monotonic reduction of isolator shear displacement. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A new mass rig system is proposed to minimize the deficiencies in current shaking table testing setups. This is accomplished by placing the inertial mass on a convex path designed to impose P‐Delta demands on slender cantilever columns. The design and performance of the mass rig system, and the principles used in deriving the equations of motion and their analytical validation against results obtained from shaking table tests, are presented. Formulation of the governing equations of motion was based on Lagrangian mechanics and solved using an implicit linear acceleration method with an adaptive time step formulation. Friction developed in the sliding system was also incorporated in the equations of motion. Experimental results validated the accuracy in the derivation and solution of the equations of motion. Validated by analytical and experimental results, P‐Delta effects were found to increase the displacement demands on slender columns in the low‐frequency range of acceleration input, while in the high‐frequency range P‐Delta effects led to no increase and in some cases even a reduction in displacement demands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Sefid‐rud concrete buttress dam with a height of 106 m was damaged during the devastating 1990 Manjil earthquake. The dam was repaired and strengthened using epoxy grouting of cracks and the installation of post‐tensioned anchors. In a previous study, nonlinear seismic response of the highest monolith with empty reservoir was investigated experimentally through model testing. A geometric‐scaled model of 1:30 was tested on a shaking table to study dynamic cracking of the model. As a result of the similarity between model and prototype cracking pattern, the model was retrofitted according to prototype retrofitting plan after the Manjil earthquake and re‐tested on shaking table to estimate the current safety of the prototype. Experimental test results showed that the post‐tensioning resulted in a significant decrease in dynamic responses in terms of crest displacement and measured strains of the retrofitted model in comparison with its corresponding responses at the first test. No cracking was observed in the retrofitted model when the base motion peak acceleration exceeded a value that was 22% higher than the one caused cracking in the first model. This can be interpreted as the efficiency of prototype post‐tensioning system in evaluating the seismic safety of Sefid‐rud dam. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
在北京工业大学振动台台阵系统上开展了一系列锯末混合土地基自由场振动台模型试验,试验中模型箱采用装配式连续体刚性模型箱,试验中输入地震动时程采用El Centro地震动记录、Taft地震动记录和天津地震动记录,地震动输入方向分为水平单向和水平双向。文中,重点考察了双向地震动输入下锯末混合土模型场地的动力特性及其变化规律,主要指标包括模型场地地震动反应的峰值加速度及其动力放大系数、加速度时程及其傅氏谱。试验结果表明:随着输入地震动强度的增大,同一测点反应的峰值加速度总体上在增大,而其加速度动力放大系数总体上呈现减小的趋势,反应的频谱组成从较高频率向较低频率移动;双向地震作用下锯末混合土模型场地的动力变化规律与单向地震作用下较为一致。  相似文献   

12.
This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.  相似文献   

13.
土-地铁隧道动力相互作用的大型振动台试验:试验方案设计   总被引:16,自引:4,他引:16  
以南京地铁的建设背景为基础,对含有可液化土层的深厚软弱场地上双洞单轨的地铁区间隧道结构进行了大型振动台模型试验研究。根据本次试验的目的和特性,首先给出了模型体系相似比的设计基本原则,并对整个模型体系进行了相似设计,对模型土和模型结构的制备方法和模型材料的物理特性进行了室内试验研究,同时,根据对隧道地震反应分析的数值模拟结果,对传感器的选择及其布置方案进行了分析。最后,根据南京及其周边地区的地震环境,对台面输入地震动的选取及其加载方法进行了具体的阐述。试验结果表明本文对土-地铁区间隧道动力相互作用的大型振动台模型试验的设计方案是合理的,对相关试验结果的整理和分析见另文。  相似文献   

14.
根据软弱场地土上地铁车站结构大型振动台模型试验结果,以软件ABAQU S为平台,采用记忆型嵌套面黏塑性动力本构模型和动塑性损伤模型,分别模拟土体和车站结构混凝土的动力特性,建立了土-地铁车站结构非线性动力相互作用二维和三维有限元分析模型,对各种试验工况下地基土-地铁车站结构体系的地震反应进行了数值模拟,并与试验结果进行了对比。结果表明:二维、三维数值模拟与振动台模型试验结果基本一致,三维模型可更好地模拟软弱场地与地铁车站结构的动力相互作用及模型结构的动力反应。数值模拟结果和振动台试验结果可相互验证其可靠性。  相似文献   

15.
A series of full‐scale shaking table tests are conducted using the E‐Defense shaking table facility on a base‐isolated four‐story RC hospital structure. A variety of furniture items, medical appliances, and service utilities are placed on the hospital specimen in as realistic a manner as possible. Four ground motions are adopted, including recorded near‐fault ground motions and synthesized long‐period, long‐duration ground motions. The test results show that the base‐isolated system performed very effectively against near‐fault ground motions due to significant reduction in the floor acceleration response, and operability and functionality of the hospital service is improved significantly as compared with the case observed for the corresponding base‐fixed system. Against the long‐period ground motion, however, the hospital service is difficult to maintain, primarily because of the significant motion of furniture items and medical appliances supported by casters. Resonance accentuated large displacements and velocities on the floors of the base‐isolated system, which causes such furniture items and medical appliances to slide, sometimes more than 3 m, resulting in occasional collision with other furnitures or against the surrounding partition walls. It is notable that a key to maintaining the function of the medical facilities is to securely lock the casters of furniture and medical appliances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Shaking table tests are performed on a one‐bay one‐story steel frame with superelastic Cu–Al–Mn shape memory alloy (SMA) tension braces. The frame is subjected to a series of scaled ground motions recorded during the 1995 Kobe earthquake, Japan. The test results demonstrate that the SMA braces are effective to prevent residual deformations and pinching. It is also shown that the time history responses observed from the shaking table tests agree well with the numerical predictions using a rate‐independent piecewise‐linear constitutive model calibrated to the quasi‐static component tests of the SMA braces. This suggests that the loading rate dependence of Cu–Al–Mn SMAs as well as the modeling error due to the piecewise linear approximation can be neglected in capturing the global response of the steel frame. Numerical simulations under a suite of near‐fault ground motion records are further performed using the calibrated analytical models to demonstrate the effectiveness of the SMA braces when the variability of near‐fault ground motions is taken into account. A stopper, or a deformation restraining device, is also proposed to prevent premature fracture of SMA bars in unexpectedly large ground motions while keeping the self‐centering capability in moderate to large ground motions. The effectiveness of the stopper is also demonstrated in the quasi‐static component and shaking table tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Generally, when a model is made of the same material as the prototype in shaking table tests, the equivalent material density of the scaled model is greater than that of the prototype because mass is added to the model to satisfy similitude criteria. When the water environment is modeled in underwater shaking table tests, however, it is difficult to change the density of water. The differences in the density similitude ratios of specimen materials and water can affect the similitude ratios of the hydrodynamic and wave forces with those of other forces. To solve this problem, a coordinative similitude law is proposed for underwater shaking table tests by adjusting the width of the upstream face of the model or the wave height in the model test to match the similitude ratios of hydrodynamic and wave forces with those of other forces. The designs of the similitude relations were investigated for earthquake excitation, wave excitation, and combined earthquake and wave excitation conditions. Series of numerical simulations and underwater shaking table tests were performed to validate the proposed coordinative similitude law through a comparison of coordinative model and conventional model designed based on the coordinative similitude law and traditional artificial mass simulation, respectively. The results show that the relative error was less than 10% for the coordinative model, whereas it reached 80% for the conventional model. The coordinative similitude law can better reproduce the dynamic responses of the prototype, and thus, this similitude law can be used in underwater shaking table tests.  相似文献   

18.
A new type of energy‐dissipated structural system for existing buildings with story‐increased frames is presented and investigated in this paper. In this system the sliding‐friction layer between the lowest increased floor of the outer frame structure and the roof of the original building is applied, and energy‐dissipated dampers are used for the connections between the columns of the outer frame and each floor of the original building. A shaking table test is performed on the model of the system and the simplified structural model of this system is given. The theory of the non‐classical damping approach is introduced to the calculation analyses and compared with test results. The results show that friction and energy‐dissipated devices are very effective in reducing the seismic response and dissipating the input energy of the model structure. Finally, the design scheme and dynamic time‐history analyses of an existing engineering project are investigated to illustrate the application and advantages of the given method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion. A three‐storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high‐tech equipment in the building subject to nearby traffic‐induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Boundary effects of a laminar container in centrifuge shaking table tests   总被引:2,自引:0,他引:2  
Two dynamic centrifuge model tests were performed to simulate dry or saturated sand deposits subjected to 1 Hz base shaking. This experimental study investigated the boundary effects of a laminar container on the seismic response acquired from accelerometers and from pore pressure transducers, both of which were embedded in the sand bed at various depths and distances from the end walls. Under the tested configurations and the employed input motion used in the study, the test results revealed minimal boundary effects on the seismic responses. The measured maximum amplitude, main frequencies, phase lags of acceleration, and the profiles of the calculated RMS acceleration amplification factor were not affected by the boundaries if the instruments were positioned at a distance of more than one-twentieth of the model length from the end walls and were not positioned on the ground surface. No obvious discrepancies were observed in the time histories of excess pore water pressure, measured at a distance of one-fourth of the model length from the end walls. These results infer that variations in the seismic response at the end walls were minimal; hence the laminar container used in the study may be used effectively to simulate 1D shear wave propagation in centrifuge shaking table tests. However, for other testing configurations, a similar study should be undertaken for evaluating the boundary effect of the laminar container on the seismic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号