首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 506 毫秒
1.
Owing to the devastating M7.6 earthquake of 20 June 1990 that occurred in the northern province of Iran, Sefid‐rud concrete buttress dam located near the epicenter was severely shaken. The crack penetrated throughout the dam thickness near slope discontinuity, causing severe leakage, but with no general failure. In this study, nonlinear seismic response of the highest monolith with empty reservoir is investigated experimentally through model testing. A geometric‐scaled model of 1:30 was tested on a shaking table with high‐frequency capability to study dynamic cracking of the model and serve as data for nonlinear computer model calibration. Three construction joints are set up in the model to simulate effects of construction aspects. The experimental results are then compared with smeared crack and damage mechanics finite‐element simulations using nonlinear concrete constitutive models based on fracture mechanics. The crack patterns obtained from numerical models are in good agreement with those obtained from shaking table tests for the case of including construction joint effects and rigid foundation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Unreinforced masonry houses are composed of building blocks with weak inter‐binding action between them which commonly possess low tensile strength. The principal tensile stresses generated by out‐of‐plane bending and in‐plane shear forces cannot be tolerated well and leads to heavy structural damage and brittle collapse beyond linear capacity of the material. Remedies such as externally applied mesh reinforcement and post‐tensioning improves post and pre‐cracking performances; however, yielding of reinforcement material or shortening of walls due to cracking causes loss of integrity and post‐tensioning force. This paper discusses a research programme on earthquake strengthening of masonry houses using post‐tensioning by elastomeric straps and related shaking table tests on 1/10 scale single storey rural dwelling models. The aim of the study is to assess the use and effectiveness of post‐tensioning rubber straps at several different configurations especially for houses with heavy earth roofs supported on wooden logs. Full‐scale application can be conducted using scrap automobile tyres, which might be implemented as an economic and environment friendly alternative strengthening technique for poor residents of low‐cost dwellings. The performance and validity of the proposed strengthening techniques were tested on 1/10 scale models using a simplistic shaking table. The structural performance of the reinforced models with vertical post‐tensioning rubber straps was significantly improved as compared to the original specimen; the results were even better when vertical and horizontal straps were used. Obtained results show promise for seismic strengthening using rubber straps for post‐tensioning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the results of an experimental work in order to evaluate the performance of a novel proposed retrofitting technique on a typical dome‐roof adobe building by shaking table tests. For this purpose, two specimens, scaled 2:3, were subjected to a total of nine shaking table tests. The unretrofitted specimen, constructed by common practice, is designed to evaluate seismic performance and vulnerability of dome‐roof adobe houses. The retrofitted specimen, exactly duplicating the first specimen, is retrofitted based on the results obtained from unretrofitted specimen tests, and the improvement in seismic behavior of the structure is investigated. Zarand earthquake (2005) Chatrood Station is selected as the input ground motion that was applied consecutively at 25, 100, 125, 150 and 175% of the design‐level excitation. At 125% excitation level, the roof of the unretofitted specimen collapsed due to the walls' out‐of‐plane action and imbalanced forces. The retrofitting elements consist of eight horizontal steel rods drilled into the walls, passed through the specimen and bolted on the opposite wall surfaces. To improve walls in‐plane seismic performance, welded steel mesh without using mortar, covered less than half area of walls on the external face of the walls, is used. In addition to strain gauges for recording steel rod responses, several instrumentations including acceleration and displacement transducers are implemented to capture response time histories of different parts of the specimens. The corresponding full‐scaled retrofitted prototype tolerated peak acceleration of 0.62 g almost without any serious damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
An experimental study of non-linear mechanisms that may occur during intense seismic response of arch dams is described in this paper. The presentation deals with three types of non-linearity that were observed during shaking table model studies: monolith joint opening, cantilever cracking, and reservoir cavitation at the dam face. The monolith joint opening phenomenon was represented by a segmental arch ring model that simulated a horizontal slice of a prototype dam. The cantilever cracking and reservoir cavitation mechanisms were studied using a model gravity dam section. The principal conclusion of the investigation was that shaking table experiments provide a practical means of studying the non-linear earthquake response of concrete arch dams, including their actual failure mechanisms.  相似文献   

5.
The potential of post‐tensioned self‐centering moment‐resisting frames (SC‐MRFs) and viscous dampers to reduce the economic seismic losses in steel buildings is evaluated. The evaluation is based on a prototype steel building designed using four different seismic‐resistant frames: (i) conventional moment resisting frames (MRFs); (ii) MRFs with viscous dampers; (iii) SC‐MRFs; or (iv) SC‐MRFs with viscous dampers. All frames are designed according to Eurocode 8 and have the same column/beam cross sections and similar periods of vibration. Viscous dampers are designed to reduce the peak story drift under the design basis earthquake (DBE) from 1.8% to 1.2%. Losses are estimated by developing vulnerability functions according to the FEMA P‐58 methodology, which considers uncertainties in earthquake ground motion, structural response, and repair costs. Both the probability of collapse and the probability of demolition because of excessive residual story drifts are taken into account. Incremental dynamic analyses are conducted using models capable to simulate all limit states up to collapse. A parametric study on the effect of the residual story drift threshold beyond which is less expensive to rebuild a structure than to repair is also conducted. It is shown that viscous dampers are more effective than post‐tensioning for seismic intensities equal or lower than the maximum considered earthquake (MCE). Post‐tensioning is effective in reducing repair costs only for seismic intensities higher than the DBE. The paper also highlights the effectiveness of combining post‐tensioning and supplemental viscous damping by showing that the SC‐MRF with viscous dampers achieves significant repair cost reductions compared to the conventional MRF. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A dynamic overloading model test has been carried out on a shaking table for an arch dam of 278 m in height to investigate its behaviours under strong earthquake. The model system included the arch dam with contraction joints, part of reservoir, partial foundation rock with topographic feature near the dam. A damping boundary consisting of viscous liquid has been used to simulate the effect of dynamic energy emission to far field, which made the dynamic interaction between dam and foundation in model arch dam system be represented properly. Three sets of different seismic waves of design level have been used as the input to investigate the difference in the responses of arch dam. Artificial waves of different levels have been used to verify the behaviours of arch dam under seismic overloading. Since the opening of joints during strong earthquake reduced the response acceleration and tensile arch stress, cantilever stress on downstream face exceeded the tensile strength first for the model dam. And the arch dam responded in a non‐linear way when input seismic load increased. Some cracks appeared near abutments, and the damage made the natural frequency of arch dam to drop obviously, but the static function did not seem to change for the model tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Seismic responses of a 292‐m high arch dam were studied by experiment on a shaking table. The model system included the arch dam with contraction joints, a part of a reservoir, and a partial foundation with a topographic feature near the dam. Potential rock wedges on the abutments and the mechanical properties including uplift on the kinematic planes were carefully simulated. A damping boundary consisting of a viscous liquid was introduced to simulate the effect of dynamic energy emission to far field, which made the dynamic interaction between the dam and the foundation be adequately represented in the model test of an arch dam system. Dynamic responses of the arch dam system under a sequence of seismic loadings in increasing strength were examined. Eleven cracks or overstresses on the model dam due to the earthquake excitations were observed, and consequently, its natural frequency dropped by about 14%, but the model dam was stable under the hydrostatic load of the impounded water after the test. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A time-domain method for the analysis of arch dam-foundation rock dynamic interaction during earthquake was proposed, and the dynamic relaxation technique was adopted to obtain the initial static response for dynamic analysis by [Du et al. (2005). The paper has been contributed to Bulletin of earthquake engineering]. In this paper, a nonlinear explicit method in time domain considering the opening and closing effect of contact joints on arch dam during earthquake is further proposed by introducing the dynamic contact force model into the method. The simulation accuracy of dynamic contact force model is verified by comparing its calculation result and test result of scale model on shaking table. Finally, the influence of joints on the seismic response of Xiaowan arch dam is studied by the proposed method and some conclusions are given.  相似文献   

9.
混合结构体系高层建筑模拟地震振动台试验研究   总被引:22,自引:2,他引:20  
随着现代建筑高度的不断增加,混合结构体系在超高层建筑中逐步广泛应用,因此对该结构体系在地震作用下的破坏机理和抗震性能展开深入的研究是一项有意义的工作。本文对一混合结构体系复杂超高层建筑进行1/35的模型模拟地震振动台试验,分析模型结构的动力特性和不同烈度地震作用下加速度、位移和应变反应,然后根据相似关系推算出原型结构的动力特性和反应,研究其在各水准地震作用下的破坏机理和破坏形式,最后对原型结构设计提出若干建议。  相似文献   

10.
Generally, when a model is made of the same material as the prototype in shaking table tests, the equivalent material density of the scaled model is greater than that of the prototype because mass is added to the model to satisfy similitude criteria. When the water environment is modeled in underwater shaking table tests, however, it is difficult to change the density of water. The differences in the density similitude ratios of specimen materials and water can affect the similitude ratios of the hydrodynamic and wave forces with those of other forces. To solve this problem, a coordinative similitude law is proposed for underwater shaking table tests by adjusting the width of the upstream face of the model or the wave height in the model test to match the similitude ratios of hydrodynamic and wave forces with those of other forces. The designs of the similitude relations were investigated for earthquake excitation, wave excitation, and combined earthquake and wave excitation conditions. Series of numerical simulations and underwater shaking table tests were performed to validate the proposed coordinative similitude law through a comparison of coordinative model and conventional model designed based on the coordinative similitude law and traditional artificial mass simulation, respectively. The results show that the relative error was less than 10% for the coordinative model, whereas it reached 80% for the conventional model. The coordinative similitude law can better reproduce the dynamic responses of the prototype, and thus, this similitude law can be used in underwater shaking table tests.  相似文献   

11.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
土石坝振动台模型试验是认识坝体地震破坏过程和检验抗震措施效果的重要手段之一。针对2种坝体材料,利用小型振动台,开展了一系列不同加载工况、不同加筋方式的土石坝小型振动台模型试验。试验结果表明:①2种坝体材料的初始破坏都首先从坝顶开始,表明坝顶是抗震的关键部位,与已有研究成果基本一致;②相同加载条件下,级配较差的碎石料模型坝的抗震性能优于砂砾石料,表明相对于级配,堆石料自身的性质对土石坝抗震性能的影响更大;③由细铁丝网和纱布组成并在坝坡采取包裹处理的复合加筋的抗震措施,抗震效果优于平铺纱布、平铺纱布且在坝坡包裹处理、平铺细铁丝网等的抗震措施。研究成果可供进一步开展土石坝大型振动台模型试验的材料选择、抗震措施设计等参考。  相似文献   

15.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Study on the failure process of high concrete dams subjected to strong earthquakes is crucial to reasonable evaluation of their seismic safety. Numerical simulation in this aspect involves dynamic failure analysis of big bulk concrete dam subjected to cyclic loading. The Rock Failure Process Analysis (RFPA) proposed by C.A. Tang, with successful applications to failure modeling of rock and concrete specimens mainly subjected to static loading, is extended for this purpose. For using the proposed model, no knowledge on the cracking route needs to be known beforehand, and no remeshing is required. Simulation of the whole process of elastic deformation, initiation and propagation of microcracks, severe damage and ultimate failure of concrete dams in earthquakes with a unified model is enabled. The model is verified through a shaking table test of an arch dam. Finally a practical gravity dam is employed as a numerical example. Considering the uncertainty in ground motion input and concrete material, typical failure process and failure modes of gravity dam are presented. Several small cracks may occur due to tension particularly at dam neck, dam faces and dam heel, and a few of them evolve into dominant ones. Relatively smaller earthquake may cause damage to the dam neck while a bigger one may bring on cracks at lower parts of the dams. Cracking at the dam bottom may incline to a direction almost perpendicular to the downstream face after propagating horizontally for a certain distance when the shaking is strong enough.  相似文献   

17.
Study on the failure process of high concrete dams subjected to strong earthquakes is crucial to reasonable evaluation of their seismic safety. Numerical simulation in this aspect involves dynamic failure analysis of big bulk concrete dam subjected to cyclic loading. The Rock Failure Process Analysis (RFPA) proposed by C.A. Tang, with successful applications to failure modeling of rock and concrete specimens mainly subjected to static loading, is extended for this purpose. For using the proposed model, no knowledge on the cracking route needs to be known beforehand, and no remeshing is required. Simulation of the whole process of elastic deformation, initiation and propagation of microcracks, severe damage and ultimate failure of concrete dams in earthquakes with a unified model is enabled. The model is verified through a shaking table test of an arch dam. Finally a practical gravity dam is employed as a numerical example. Considering the uncertainty in ground motion input and concrete material, typical failure process and failure modes of gravity dam are presented. Several small cracks may occur due to tension particularly at dam neck, dam faces and dam heel, and a few of them evolve into dominant ones. Relatively smaller earthquake may cause damage to the dam neck while a bigger one may bring on cracks at lower parts of the dams. Cracking at the dam bottom may incline to a direction almost perpendicular to the downstream face after propagating horizontally for a certain distance when the shaking is strong enough.  相似文献   

18.
汶川地震中宝珠寺水电站遭受的地震烈度为8°(相当于水平峰值加速度0.2 g),远超过大坝的设计地震水平(0.1 g),震后大坝未见明显震损.为解释大坝在地震中的抗震现象,构建了坝址区三维模型.考虑坝体横缝非线性以及三个方向地震作用的不同组合方式,对汶川地震中大坝的动力响应进行有限元模拟.在此基础上,针对震后提高的抗震设防标准,进一步选取典型坝段,采用二维弹塑性方法对大坝进行抗震复核并分析可能的破坏模式.模拟结果表明:横河向地震分量起主导作用而顺河向地震作用相对较弱是宝珠寺重力坝在汶川地震中免于发生损坏的主要原因.坝顶混凝土发生挤压破碎缘于永久横缝在地震中高频渐开渐合行为引起的剧烈碰撞.宝珠寺重力坝对设计地震0.27 g的强震可以保持整体的安全性,对校核地震0.32 g的强震整体安全性降低,水库正常运行及抵抗余震的能力将受到影响.  相似文献   

19.
Multi‐storey buildings made of cross‐laminated timber panels (X‐lam) are becoming a stronger and economically valid alternative in Europe compared with traditional masonry or concrete buildings. During the design process of these multi‐storey buildings, also their earthquake behaviour has to be addressed, especially in seismic‐prone areas such as Italy. However, limited knowledge on the seismic performance is available for this innovative massive timber product. On the basis of extensive testing series comprising monotonic and reversed cyclic tests on X‐lam panels, a pseudodynamic test on a one‐storey X‐lam specimen and 1D shaking table tests on a full‐scale three‐storey specimen, a full‐scale seven‐storey building was designed according to the European seismic standard Eurocode 8 and subjected to earthquake loading on a 3D shaking table. The building was designed with a preliminary action reduction factor of three that had been derived from the experimental results on the three‐storey building. The outcomes of this comprehensive research project called ‘SOFIE – Sistema Costruttivo Fiemme’ proved the suitability of multi‐storey X‐lam structures for earthquake‐prone regions. The buildings demonstrated self‐centring capabilities and high stiffness combined with sufficient ductility to avoid brittle failures. The tests provided useful information for the seismic design with force‐based methods as defined in Eurocode 8, that is, a preliminary experimentally based action reduction factor of three was confirmed. Valid, ductile joint assemblies were developed, and their importance for the energy dissipation in buildings with rigid X‐lam panels became evident. The seven‐storey building showed relatively high accelerations in the upper storeys, which could lead to secondary damage and which have to be addressed in future research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
To investigate the seismic liquefaction performance of earth dams under earthquake loading, we present a new methodology for evaluating the seismic response of earth dams based on a performance‐based approach and a stochastic vibration method. This study assesses an earthfill dam located in a high‐intensity seismic region of eastern China. The seismic design levels and corresponding performance indexes are selected according to performance‐based criteria and dam seismic codes. Then, nonlinear constitutive models are used to derive an array of deterministic seismic responses of the earth dam by dynamic time series analysis based on a finite element model. Based on these responses, the stochastic seismic responses and dynamic reliability of the earth dam are obtained using the probability density evolution method. Finally, the seismic performance of the earth dam is assessed by the performance‐based and reliability criteria. Our results demonstrate the accuracy of the seismic response analysis of earth dams using the random vibration method. This new method of dynamic performance analysis of earth dams demonstrates that performance‐based criteria and reliability evaluation can provide more objective indices for decision‐making rather than using deterministic seismic acceleration time series as is the current normal practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号