首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated and optimal experimental conditions were ascertained. The results showed that when the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of MG followed the pseudo‐second‐order rate equation and fits the Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Tempkin equations well. The maximum removal of MG was obtained at pH 6 as 99.86% for adsorbent dose of 1 g/50 mL and 25 mg L?1 initial dye concentration at room temperature. Activated carbon developed from the peel of C. sativa fruit can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.  相似文献   

2.
Decolorization of C.I. Basic Blue 3 (BB3) by oxalate catalyzed photoelectro‐Fenton process based on carbon nanotube‐polytetrafluoroethylene (CNT‐PTFE) electrode as cathode under visible light was studied. A comparison of electro‐Fenton, photoelectro‐Fenton, and photoelectro‐Fenton/oxalate processes for decolorization of the solution containing BB3 has been performed. The results showed that color removal follows the decreasing order: photoelectro‐Fenton/oxalate > photoelectro‐Fenton > electro‐Fenton. Response surface methodology (RSM) was employed to assess individual and interactive effects of the four main independent parameters on the decolorization efficiency. A central composite design (CCD) was employed for optimization of photoelectro‐Fenton/oxalate treatment of BB3. The analysis of variance (ANOVA) showed a high coefficient of determination value (R2 = 0.958) and satisfactory prediction second‐order regression. This study clearly showed that RSM was one of the suitable methods to optimize the operating conditions.  相似文献   

3.
The response surface methodology involving the five‐level central composite design (CCD) was employed to model and optimize the Cr(VI) immobilization process in a Cr‐spiked soil using starch‐stabilized zerovalent iron nanoparticles (ZVIn). ZVIn were synthesized via a borohydride reduction method and characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). All Cr(VI) immobilization experiments were conducted in a batch system. The variables for the CCD optimization were the ZVIn dosage (% w/w), reaction time (min), and initial Cr(VI) concentration in soil (mg/kg). The predicted response values by the second‐order polynomial model were found to be in good agreement with experimental values (R2 = 0.968 and adj‐R2 = 0.940). The optimization result showed that the Cr(VI) immobilization efficiency presented the maximal result (90.63%) at the following optimal conditions: ZVIn dosage of 1.5% w/w, reaction time of 60 min, and an initial Cr(VI) concentration of 400 mg/kg.  相似文献   

4.
Acid violet 19 (AV) belongs to the triphenylmethane (TPM) class of dyes which are potentially mutagenic or carcinogenic. However, very little studies on biodegradation of AV were reported as compared to other TPM dyes such as malachite green and crystal violet. In this study, AV was decolorized up to 98% within 30 min by Pseudomonas aeruginosa BCH. The decolorization depends on the initial dye concentration, pH, and temperature. However, the dye was decolorized under wide pH and temperature ranges with an optimum of pH 7 and 30°C. Up to 250 mg L?1 of dye was found to be tolerated and decolorized by this strain. It showed decolorization ability for seven repeated dye addition cycles. The effect of additional carbon sources on dye decolorization was studied in which mannitol containing medium showed decolorization in 15 min. Induction in the enzyme activities of laccase, NADH‐DCIP reductase, and veratryl alcohol oxidase (VAO) indicates their involvement in AV degradation. Various analytical studies viz. UV–VIS, HPTLC, HPLC, and FTIR confirmed the biodegradation of AV by the bacterium. Based on GC‐MS analysis, a possible degradation pathway for AV was proposed. The phytotoxicity studies using Phaseolus mungo and Sorghum vulgare revealed the less toxic nature of metabolites formed after AV degradation.  相似文献   

5.
In the present study, effects of operational parameters on the electrical energy consumption for photooxidative process (UV/H2O2) for the decolorization of C. I. Acid Red 88 (AR88) have been investigated. In a series of experiments, 20 mg L?1 of AR88 solution were irradiated in the presence of different concentrations of H2O2 (to find out optimum amount of H2O2) by UV light intensity of 30 W m?2 for certain irradiation times. The decolorization of the dye followed pseudo first‐order kinetics, and hence, the figure‐of‐merit electrical energy per order (EEO) is appropriate for estimating the electrical energy efficiency. The electrical energy consumption was determined during the variation of some parameters such as initial H2O2 concentration, initial dye concentration, UV light intensity, pH, and the gap size of solution. Results showed that electrical energy could be reduced by optimizing operational parameters.  相似文献   

6.
Response surface methodology (RSM) employing the three‐level Box–Behnken factorial design was used to optimize the biosorption of Ag(I) by the macrofungus Pleurotus platypus. The initial Ag(I) concentration (100–300 mg/L), pH (3.0–9.0), and biomass dosage (1.0–5.0 g/L) were chosen as the process variables for the optimization. A coefficient of determination (R2) value (0.99), model F value (234.18), and its low p‐value (F < 0.0001) along with the lower value of coefficient of variation (2.44%) indicated the fitness of response surface quadratic model during the present study. At the optimum pH (6.0), initial metal concentration (220 mg/L), and biomass dosage (3.0 g/L), the model predicted 46.7 mg/g Ag(I) uptake and an experimental 46.77 mg/g Ag(I) uptake by P. platypus was obtained. This is the first report on Ag(I) sorption by P. platypus using statistical experimental design employing RSM which may be helpful towards the treatment of industrial effluent containing silver.  相似文献   

7.
This study investigates structural and adsorption properties of the powdered waste shells of Rapana gastropod and their use as a new cheap adsorbent to remove reactive dye Brilliant Red HE‐3B from aqueous solutions under batch conditions. For the powder shells characterization, solubility tests in acidic solutions and X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform IR spectroscopy (FT‐IR) and thermogravimetric analyses were performed. The results revealed that the adsorbent surface is heterogeneous consisting mainly from calcium carbonate layers (either calcite or aragonite) and a small amount of organic macromolecules (proteins and polysaccharides). The dye adsorptive potential of gastropod shells powder was evaluated as function of initial solution pH (1–5), adsorbent dose (6–40 g L?1), dye concentration (50–300 mg L?1), temperature (5–60°C), and contact time (0–24 h). It was observed that the maximum values of dye percentage removal were obtained at the initial pH of solution 1.2, shells dose of 40 g L?1, dye initial concentration of 50–50 mg L?1 and higher temperatures; the equilibrium time decreases with increasing of dye concentration. It is proved that the waste seashell powder can be used as low cost bioinorganic adsorbent for dyes removal from textile wastewaters.  相似文献   

8.
Laccase from the white‐rot fungus Pleurotus florida, produced under solid‐state fermentation conditions, was used for the decolorization of reactive dye Remazol Brilliant Blue R (RBBR). RBBR was decolorized up to 46% by P. florida laccase alone in 10 min. In the presence of N‐hydroxybenzotriazole (HBT), the rate of decolorization was enhanced 1.56‐fold. Central composite design of response surface methodology with four variables namely, dye, enzyme, redox mediator concentrations, and time at five levels was applied to optimize the RBBR decolorization. The predicted optimum level of variables for maximum RBBR decolorization (87%) was found to be 52.90 mg L?1 (RBBR), 1.87 U mL?1 (laccase), 0.85 mM (HBT), and 7.17 min (time), respectively. The validation results showed that the experimental value of RBBR decolorization (82%) was close to the predicted one. The disappearance of C–N and C–X groups, and a small shift in N–H groups in Fourier‐transform infra red (FTIR) spectroscopy confirms the degradation of RBBR chromophore by laccase enzyme. The phytotoxicity of RBBR was considerably reduced after the treatment with laccase. RBBR decolorization kinetics; Km and Vmax were calculated to be 145.82 mg L?1 and 24.86 mg L?1 min, respectively.  相似文献   

9.
In this study, the oxidative decolorization of C.I. reactive yellow 145 (RY 145) from synthetic textile wastewater including RY 145 and polyvinyl alcohol by Fenton and sono‐Fenton processes which are the combination of Fenton process with ultrasound has been carried out. The effects of some operating parameters which are the initial pH of the solution, the initial concentration of Fe2+, H2O2, and the dye, temperature, and agitation speed on the color and chemical oxygen demand (COD) removals have been investigated. The optimum conditions have been found as [Fe2+] = 20 mg/L, [H2O2] = 20 mg/L, pH 3 for Fenton process and [Fe2+] = 20 mg/L, [H2O2] = 15 mg/L, pH 3 for sono‐Fenton process by indirectly sonication at 35 kHz ultrasonic frequency and 80 W ultrasonic power. The color and COD removal efficiencies have been obtained as 91 and 47% by Fenton process, and 95 and 51% by sono‐Fenton processes, respectively. Kinetic studies have been performed for the decolorization of RY 145 under optimum conditions at room temperature. It has been determined that the decolorization has occurred rapidly by sono‐Fenton process, compared to Fenton process.  相似文献   

10.
The photocatalytic decolorization and mineralization of Reactive Black 5 (RB5) dye in presence of TiO2 Degussa P25 has been studied using artificial light radiation in a shallow pond slurry reactor. The equilibrium adsorption of dye, influence of pH (3–11), catalyst load (0.5–3.0 g/L), and dye concentration (20–100 mg/L) on decolorization kinetics were studied. The effect of area to volume ratio of photoreactor on decolorization kinetics has been also studied. Mineralization studies were performed at optimized conditions of pH (3) and catalyst load (1.5 g/L). The maximum adsorption (26.5 mg/g) of dye was found to occur at pH 3. The apparent pseudo first order decolorization rate constant (kapp) value followed the order pH 3 > pH 11 > pH 9 > pH 7. As compared to available literature reduction in total organic carbon (TOC) was minimal by the time there was complete decolorization. Initial reduction in TOC was followed by subsequent increasing trend till complete decolorization. Final decreasing trend in TOC was observed only after complete decolorization. Twelve hours of treatment under experimental conditions reduced TOC content by 70% only. Discussion of results suggest that photocatalytic treatment of colored effluent under low UV intensity, and low A/V ratio may result in completely decolorized effluent but still having high COD.  相似文献   

11.
The removal of Alphazurine FG (AF) dye from water by an electrocoagulation process has been studied. The effect of some operational parameters, such as anode material, current density, initial dye concentration, pH of solution, conductivity, and inter‐electrode distance, on the removal efficiency was investigated. Iron and aluminum were used as anodes in the electrocoagulation cell. It was found that the efficiency of the iron anode was better than that of the aluminum anode for AF removal. The factors that affected the removal efficiency were the current density and the initial dye concentration. The removal efficiency increased from about 35% at 25 A m–2 to about 97% at 100 A m–2, during 4 min of electrocoagulation. The results exhibited pseudo‐first‐order kinetics for AF removal by electrocoagulation. In addition, a mathematical model was successfully established for predicting the removal efficiency. A comparison between the model results and experimental data gave a high correlation coefficient (R2 = 0.9925), which indicates that the model is able to predict the removal efficiency of AF.  相似文献   

12.
Solar photocatalytic decolorization and detoxification of batik dye wastewater using titanium dioxide (TiO2) immobilized on poly‐3‐hydroxybutyrate (P(3HB)) film was studied. The effects of initial dye concentration, catalyst concentration, P(3HB) film thickness, and fabrication methods of the nanocomposite films were evaluated against methylene blue, a standard organic dye. It was observed that 0.4 g of P(3HB)‐40 wt% TiO2 removed 96% of the color under solar irradiation. P(3HB) and TiO2, mixed concurrently in chloroform followed by stirring for 24 h showed a more even distribution of the photocatalyst on the polymer surface and yielded almost 100% color removal. The photocatalytic films were able to completely decolorize real industrial batik dye wastewater in 3 h and induced a chemical oxygen demand (COD) reduction of 80%. Reusability of the 0.4 g P(3HB)‐40 wt% TiO2 film in decolorizing the batik dye wastewater was also possible as it gave a high consistent value of decolorization percentage (>80%) even after the sixth repeated usage. Recovery step of the photocatalysts was also not required in this simple treatment system. The decolorized batik dye wastewater had less/no toxic effects on mosquito larvae, Aedes aegypti, and microalgae, Scenedesmus quadricauda indicating simultaneous detoxification process along with the decolorization process.  相似文献   

13.
Sorption behavior of Lanaset Red (LR) G on lentil straw (LS) was studied as a function of particle size, adsorbent dose, initial pH value, initial dye concentration, and contact time. Sorption kinetics data was well described by logistic model. Modified logistic equation can be used to explain effects of initial dye concentrations and contact time on the sorption of LR G with high R2 value. Freundlich model was found to be excellent in representing the equilibrium data. Thermodynamic parameters like free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were calculated by the use of Langmuir constant. Thermodynamic data showed that the sorption processes were spontaneous and endothermic in nature. Desorption process suggested that strong binding and weak interactions could be formed between adsorbent surface and dye molecules. Results revealed that LS has a remarkable potential for the sorption of LR G.  相似文献   

14.
This study challenges the use of three nature‐inspired algorithms as learning frameworks of the adaptive‐neuro‐fuzzy inference system (ANFIS) machine learning model for short‐term modeling of dissolved oxygen (DO) concentrations. Particle swarm optimization (PSO), butterfly optimization algorithm (BOA), and biogeography‐based optimization (BBO) are employed for developing predictive ANFIS models using seasonal 15 min data collected from the Rock Creek River in Washington, DC. Four independent variables are used as model inputs including water temperature (T), river discharge (Q), specific conductance (SC), and pH. The Mallow's Cp and R2 parameters are used for choosing the best input parameters for the models. The models are assessed by several statistics such as the coefficient of determination (R2), root‐mean‐square error (RMSE), Nash–Sutcliffe efficiency, mean absolute error, and the percent bias. The results indicate that the performance of all‐nature‐inspired algorithms is close to each other. However, based on the calculated RMSE, they enhance the accuracy of standard ANFIS in the spring, summer, fall, and winter around 13.79%, 15.94%, 6.25%, and 12.74%, respectively. Overall, the ANFIS‐PSO and ANFIS‐BOA provide slightly better results than the other ANFIS models.  相似文献   

15.
The removal of Malachite green (MG) from aqueous solutions by cross‐linked chitosan coated bentonite (CCB) beads was investigated and the CCB beads were characterized by Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X‐ray diffraction (XRD) analysis. Solubility and swelling tests were performed in order to determine the stability of the CCB beads in acidic solution, basic solution and distilled water. The amount of MG adsorbed was shown to be influenced by the initial pH of the solution, contact time and the initial MG concentration. A kinetic study indicated that a pseudo‐second‐order model agreed well with the experimental data. From the Langmuir isotherm model, the maximum adsorption capacity of MG was found to be 435.0 mg g–1. Desorption tests were carried out at different concentrations of EDTA, H2SO4 and NaOH. However, all desorbing solutions showed zero recovery of MG at all concentrations.  相似文献   

16.
In this study, the adsorption of reactive red 120 (RR 120) on pistachio husk, and the modeling of the adsorption was investigated. Characterization of the pistachio husk was confirmed by Fourier transform infrared spectroscopy. The pHzpc of pistachio husk was found to be pH 8.5. Increasing the initial pH value decreased (p < 0.01) the amount of dye adsorbed. However, increasing the initial dye concentration from 50 to 900 mg/L at pH 1 increased (p < 0.01) the equilibrium dye uptake from 20.83 to 182.10 mg/g. Results indicated that this adsorbent had great potential for the removal of RR 120 dye. The logistic model was found to be the most suitable of the kinetic and equilibrium models tested to describe the adsorption of the dye. The parameters determined from the logistic model were well correlated with the initial dye concentration, and were seen to increase with the increasing initial dye concentration, but this was not observed from pseudo‐second order kinetics.  相似文献   

17.
The Cercis siliquastrum tree leaves are introduced as a low cost biosorbent for removal of Ag(I) from aqueous solution in a batch system. FT‐IR, XRD analysis, and potentiometric titration illustrate that the adsorption took place and the acidic functional group (carboxyl) of the sorbent was involved in the biosorption process. In addition, it was observed that the pH beyond pHpzc 4.4 is favorable for the removal procedure. The effect of operating variables such as initial pH, temperature, initial metal ion concentration, and sorbent mass on the Ag(I) biosorption was analyzed using response surface methodology (RSM). The proposed quadratic model resulting from the central composite design approach (CCD) fitted very well to the experimental data. The optimum condition obtained with RSM was an initial concentration of Ag(I) of 85 mg L?1, pH = 6.3 and sorbent mass 0.19 g. The applicability of different kinetic and isotherm models for current biosorption process was evaluated. The isotherm, kinetic, and thermodynamic studies showed the details of sorbate‐sorbent behavior. The competitive effect of alkaline and alkaline earth metal ions during the loading of Ag(I) was also considered.  相似文献   

18.
Batch sorption technique was carried out for the removal of anionic dye Congo red (CR) from aqueous solution using raw rectorite (R‐REC) and organified rectorite (CTA+‐REC) modified by cetyltrimethylammonium bromide (CTAB) as adsorbents. The effects of organification degree of CTA+‐REC as well as the process parameters including the pH of dye solution, sorption time, and initial dye concentration on adsorption capacity for CR were investigated and the sorption kinetics was also evaluated. The results showed that the sorption behaviors of R‐REC and CTA+‐REC for CR followed pseudo‐second‐order kinetic model and the sorption equilibrium data perfectly obeyed the Langmuir isotherm. The thermodynamic parameters including entropy of sorption (ΔS0), enthalpy of sorption (ΔH0), and Gibbs free energy of sorption (ΔG0) were obtained and analyzed. Fourier transform infrared study revealed that a chemisorption process occurred between CR and CTA+‐REC. REC modified by cationic surfactants showed the higher adsorption capacities for CR compared to R‐REC and in theory would be used as an efficient and promising adsorbent for the removal of anionic dyes in wastewater treatment.  相似文献   

19.
The effect of varying parameters such as dye concentration, adsorbent dose, pH and temperature on the adsorption capacity of Pleurotus ostreatus is investigated. The commonly available white rot fungus Pleurotus ostreatus is investigated as a viable biomaterial for the biological treatment of synthetic basic methylene blue effluents. The results obtained from the batch experiments reveal the ability of the fungus to remove methylene blue. The performance is dependent on the dye concentration, pH, and fungal biomass. The equilibrium and kinetics of adsorption are investigated and the Langmuir equation is used to fit the equilibrium isotherm. The adsorption isotherm of methylene blue follows only the Langmuir model with a correlation coefficient of ca. 0.96–0.99. The maximum adsorption capacity is ca. 70 mg of dye per g of dry fungus at pH 11, 70 mg L–1 dye, and 0.1 g L–1 fungus concentration, respectively. This study demonstrates that the fungus could be used as an effective biosorbent for the treatment of dye‐containing wastewater streams.  相似文献   

20.
This experimental research deals with using steel scrap as a heterogeneous catalyst. This catalyzes the oxidation reaction of real textile dye wastewater based on a modified solar photo‐Fenton oxidation process. Morphologic analysis and mapping of the elementary composition of the steel scrap have been carried out by scanning electron microscopy. The effects of concentration of H2O2, the pH of the solution and the catalyst loading on the degradation of textile dye wastewater are elucidated. Kinetic studies have been performed for the decolorization of wastewater under optimum conditions. It could be concluded that the steel scrap is a potential substitute for ferrous salts as a catalyst for the solar photo‐Fenton reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号