首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 15 member ensemble of 20th century simulations using the ECHAM4–T42 atmospheric GCM is utilized to investigate the potential predictability of interannual variations of seasonal rainfall over Africa. Common boundary conditions are the global sea surface temperatures (SST) and sea ice extent. A canonical correlation analysis (CCA) between observed and ensemble mean ECHAM4 precipitation over Africa is applied in order to identify the most predictable anomaly patterns of precipitation and the related SST anomalies. The CCA is then used to formulate a re-calibration approach similar to model output statistics (MOS) and to derive precipitation forecasts over Africa. Predictand is the climate research unit (CRU) gridded precipitation over Africa. As predictor we use observed SST anomalies, ensemble mean precipitation over Africa and a combined vector of mean sea level pressure, streamfunction and velocity potential at 850 hPa. The different forecast approaches are compared. Most skill for African precipitation forecasts is provided by tropical Atlantic (Gulf of Guinea) SST anomalies which mainly affect rainfall over the Guinean coast and Sahel. The El Niño/Southern Oscillation (ENSO) influences southern and East Africa, however with a lower skill. Indian Ocean SST anomalies, partly independent from ENSO, have an impact particularly on East Africa. As suggested by the large agreement between the simulated and observed precipitation, the ECHAM4 rainfall provides a skillful predictor for CRU precipitation over Africa. However, MOS re-calibration is needed in order to provide skillful forecasts. Forecasts using MOS re-calibrated model precipitation are at least as skillful as forecast using dynamical variables from the model or instantaneous SST. In many cases, MOS re-calibrated precipitation forecasts provide more skill. However, differences are not systematic for all regions and seasons, and often small.  相似文献   

2.
Three ensembles of AMIP-type simulations using the Arpege-climat coupled land–atmosphere model have been designed to assess the relative influence of SST and soil moisture (SM) on climate variability and predictability. The study takes advantage of the GSWP2 land surface reanalysis covering the 1986–1995 period. The GSWP2 forcings have been used to derive a global SM climatology that is fully consistent with the model used in this study. One ensemble of ten simulations has been forced by climatological SST and the simulated SM is relaxed toward the GSWP2 reanalysis. Another ensemble has been forced by observed SST and SM is evolving freely. The last ensemble combines the observed SST forcing and the relaxation toward GSWP2. Two complementary aspects of the predictability have been explored, the potential predictability (analysis of variance) and the effective predictability (skill score). An analysis of variance has revealed the effects of the SST and SM boundary forcings on the variability and potential predictability of near-surface temperature, precipitation and surface evaporation. While in the tropics SST anomalies clearly maintain a potentially predictable variability throughout the annual cycle, in the mid-latitudes the SST forced variability is only dominant in winter and SM plays a leading role in summer. In a similar fashion, the annual cycle of the hindcast skill (evaluated as the anomalous correlation coefficient of the three ensemble means with respect to the “observations”) indicates that the SST forcing is the dominant contributor over the tropical continents and in the winter mid-latitudes but that SM is supporting a significant part of the skill in the summer mid-latitudes. Focusing on boreal summer, we have then investigated different aspects of the SM and SST contribution to climate variations in terms of spatial distribution and time-evolution. Our experiments suggest that SM is potentially an additional source of climate predictability. A realistic initialization of SM and a proper representation of the land–atmosphere feedbacks seem necessary to improve state-of-the-art dynamical seasonal predictions, but will be actually efficient only in the areas where SM anomalies are themselves predictable at the monthly to seasonal timescale (since remote effects of SM are probably much more limited than SST teleconnections).  相似文献   

3.
Skill as a function of time scale in ensembles of seasonal hindcasts   总被引:1,自引:0,他引:1  
Forecast skill as a function of time lead and time averaging is examined in two 6-member ensembles of seasonal hindcasts. One ensemble is produced with the second generation general circulation model of the Canadian Centre for Climate Modelling and Analysis (GCM2) and the other with a reduced resolution version of the numerical weather prediction model of the Canadian Meteorological Centre (SEF). The integrations are initiated from the NCEP/NCAR reanalyzed data. Monthly sea surface temperature anomalies observed prior to the forecast period are maintained throughout the forecast season. A statistical forecast improvement technique, based on the singular value decomposition of forecast and reanalyzed fields, is discussed and evaluated. A simple analogue of the hindcast integrations is used to examine the behavior of two common skill scores, the correlation skill score and the explained variance skill score. The maximal skill score and the corresponding optimal forecast in this analogue are identified. The total skill of the optimal forecast is a sum of two terms, one associated with the initial conditions and the other with the lower boundary forcing. The two sources of skill operate on different time scales, with initial conditions being more important in the first one-two weeks and the atmospheric response to the boundary forcing becoming more dominant for longer time leads and time averages. This suggests that these sources of skill should be considered separately in forecast optimization. The statistical technique is moderately successful in improving the skill of monthly to seasonal forecasts of 500 hPa height (Z 500) and 700 hPa temperature (T 700) in the Northern Hemisphere and in the North Pacific/North America sector. The improvement is better when the forecasts for the first week and for the rest of the season are optimized separately. The SEF model produces better Z 500 and T 700 forecasts than GCM2 in the first one-two weeks whereas GCM2 performs slightly better at longer time leads. The skill of zero time lead forecast decays rapidly with averaging interval for time averages up to about 30–45 days and stabilizes, or even rises, for longer time averages. Excluding the first week from seasonal forecasts results in substantial degradation of predictive skill. Received: 1 November 1999 / Accepted: 24 May 2000  相似文献   

4.
 Forecast skill as a function of the ensemble size is examined in a 24-member ensemble of northern winter (DJF) hindcasts produced with the second generation general circulation model of the Canadian Centre for Climate Modelling and Analysis. These integrations are initialized from the NCEP reanalyses at 6 h intervals prior to the forecast season. The sea surface temperatures that are applied as lower boundary conditions are predicted by persisting the monthly mean anomaly observed prior to the forecast period. The potential predictability that is attributed to lower boundary forced variability is estimated. In lagged-average forecasting, the forecast skill in the first two weeks, which originates predominately from the initial conditions, is greatest for relatively small ensemble sizes. The forecast skill increases monotonically with the ensemble size in the rest of the season. The skill of DJF 500 hPa geopotential height hindcasts in the Northern Hemisphere and in the Pacific/North America sector improves substantially when the ensemble size increases from 6 to 24. A statistical skill improvement technique based on the singular value decomposition method is also more successful for larger ensembles. Received: 22 February 2000 / Accepted: 6 December 2000  相似文献   

5.
利用1979—2015年中国国家气候中心整编的160站月平均气温和NCEP/NCAR全球大气再分析资料,从1979/1980—2008/2009年冬季前期500 h Pa高度场、200 h Pa势函数和850 h Pa势函数场选择预测因子,考虑不同时效因子的组合及其独立性,综合应用多因子回归集合、交叉检验集合、逐月滚动集合,建立了针对中国冬季气温的逐月滚动预测模型,并利用该模型对2010/2011—2014/2015年冬季气温进行了独立预测试验和检验。结果表明,综合运用多种集合可提高短期气候客观定量预测的可行性和稳定性。多因子回归集合能增加可预测站点数,交叉检验集合可减少因统计关系不稳定而产生的对预报效果的影响,逐月滚动集合的应用不仅增加了可预测站点数,而且使预测效果更加稳定。本文建立的预测模型可对中国冬季气温进行长时效的预测,且有一定的预报技巧,对实际的季节预测业务有重要应用价值。  相似文献   

6.
Summary In this study the authors have developed a statistical method and have reconstructed Northern Hemisphere 500 hPa heights back to the late 19th century using one temperature and three sea level pressure (SLP) data sets. First, the relationship between ERA40 500 hPa heights and surface temperature and SLP was screened using stepwise multiple regression based on the calibration period of 1958–2002 (1998/2000 according to the availability of SLP data). All selected predictors (temperature and SLP) were significant and their variance contribution was greater than 1%. On average, there were 8.1 variables retained in the final regression equations. Second, the regression equations were applied to compute the 500 hPa height through to the late 19th century for the whole Northern Hemisphere. As the SLP and temperature coverage improved over time, the number of predictors decreased by about 1 in the most recent periods, and the root mean squared error decreased by about 0.8 m. A leave-one-out cross-validation method was used to test the skill and stability of the regression models. The reduction of error during the cross-validation period of 1958–1997 varied from 0.33 to 0.56, depending on the SLP data. Reconstructions were also checked using NCEP/NCAR 500 hPa heights from January 1949 to December 1957, and compared with the historical reconstruction over Europe. Reconstructions show high consistency with these independent data sets. Generally, the reconstruction provides a valuable opportunity to analyze, as well as to validate climate simulations of the variability in free atmosphere circulations over the past one hundred years.  相似文献   

7.
评估了耦合气候系统模式FGOALS海洋同化试验对西北太平洋夏季降水和SST相关关系的模拟技巧,并对比了相应的观测海温强迫试验(AMIP)和历史气候模拟试验结果。结果显示,FGOALS海洋同化试验对亚洲季风区大部分海域夏季SST年际变化有较高的模拟技巧,但其对菲律宾以东海域模拟技巧较低。在西北太平洋夏季降水-SST相关关系方面,同化试验部分地再现了南海和菲律宾以东海域降水超前SST变化1个月和同时二者的负相关关系,优于AMIP试验但逊于自由耦合模拟试验。同化试验对SST倾向-降水相关关系的模拟技巧亦介于AMIP试验和自由耦合试验之间。观测中,西北太平洋夏季降水与环流异常受日界线附近和赤道东印度洋海洋大陆地区海温异常的遥强迫,并通过改变到达海表的净短波辐射通量影响局地SST异常,导致局地海温-降水和局地海温倾向-降水的负相关关系。在AMIP试验中,遥强迫导致的西北太平洋地区环流异常较之观测偏弱,由于缺少局地海气耦合过程,在西北太平洋多数地区表现为海温对大气的强迫作用,即SST-降水正相关关系。FGOALS同化试验和自由耦合试验考虑了局地海气耦合过程,虽然低估了遥强迫对西北太平洋地区夏季环流异常的影响,依然部分模拟出局地降水-SST负相关关系但较之观测偏弱。同时,自由耦合试验高估了西北太平洋20°N以南地区海温异常对大气环流异常的强迫,使得其对中国南海和日本岛以南海域SST-降水负相关关系的模拟稍优于同化试验。  相似文献   

8.
用混合海气耦合模式长期积分的模拟结果, 分析了模式大气的年际变化性; 用1979~1994年间的“回报”个例, 探讨了该模式对ENSO引起的全球气候异常的预报。结果表明:模式能较好地再现与ENSO相关的全球大气环流的年际变化特征; 对预报而言, 模式较高的预报技巧主要分布在热带地区, 全球热带大气具有较稳定的1年左右的可预报时效; 基本上可预报中、高纬地区由ENSO引起的冬、夏季大气环流异常 (包括气温和降水), 超前时间可达9个月至1年。  相似文献   

9.
Evaluation of long-term trends in tropical cyclone intensity forecasts   总被引:1,自引:0,他引:1  
Summary The National Hurricane Center and Joint Typhoon Warning Center operational tropical cyclone intensity forecasts for the three major northern hemisphere tropical cyclone basins (Atlantic, eastern North Pacific, and western North Pacific) for the past two decades are examined for long-term trends. Results show that there has been some marginal improvement in the mean absolute error at 24 and 48 h for the Atlantic and at 72 h for the east and west Pacific. A new metric that measures the percent variance of the observed intensity changes that is reduced by the forecast (variance reduction, VR) is defined to help account for inter-annual variability in forecast difficulty. Results show that there have been significant improvements in the VR of the official forecasts in the Atlantic, and some marginal improvement in the other two basins. The VR of the intensity guidance models was also examined. The improvement in the VR is due to the implementation of advanced statistical intensity prediction models and the operational version of the GFDL hurricane model in the mid-1990s. The skill of the operational intensity forecasts for the 5-year period ending in 2005 was determined by comparing the errors to those from simple statistical models with input from climatology and persistence. The intensity forecasts had significant skill out to 96 h in the Atlantic and out to 72 h in the east and west Pacific. The intensity forecasts are also compared to the operational track forecasts. The skill was comparable at 12 h, but the track forecasts were 2 to 5 times more skillful by 72 h. The track and intensity forecast error trends for the two-decade period were also compared. Results showed that the percentage track forecast improvement was almost an order of magnitude larger than that for intensity, indicating that intensity forecasting still has much room for improvement.  相似文献   

10.
This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850?hPa with a value?≥450?×?10?6?s?1, and the temperature at 300?hPa being 1°C higher than the average temperature within 15° latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3.  相似文献   

11.
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, wh  相似文献   

12.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

13.
Summary The skill of the FSU Superensemble technique as applied to global numerical weather prediction is evaluated extensively in this paper. The global mass and motion fields for year 2000 and precipitation over the domain 55S to 55N for year 2001, as predicted by the Superensemble, the ensemble member models, and the mean of the ensemble members, are evaluated by standard statistical measures of skill to determine the performance of the Superensemble in relation to the other models. The member models are global forecast models from 5 of the worlds operational forecast centers in addition to the FSU global spectral model. For precipitation 5 additional versions of the FSU global model are utilized in the ensemble, as defined by different initial conditions provided by various physical initialization algorithms. Statistical parameters calculated for the mass and motion fields include root mean square (RMS) error, systematic error (or bias), and anomaly correlation. These are applied to the mean sea level pressure, 500hPa heights, and the wind fields at 850hPa and 200hPa. Statistical parameters that were calculated for precipitation include RMS error, correlation, equitable threat score (ETS), and a special definition of bias appropriate for the precipitation field. For the mass and motion fields the performance of the Superensemble was considered for the annual global case, as well as for each hemisphere (north and south) and for each of the four seasons. For precipitation only the annual case was considered over the domain cited above.For the mass and motion fields the RMS calculations showed the Superensemble to be superior (to have the smallest total forecast error) in all comparisons to the ensemble member models, and to be superior to the ensemble mean in the vast majority of comparisons. Performance in comparison to the other models was generally better in the Southern Hemisphere than in the Northern Hemisphere, and better in the transition seasons of fall and spring than in the extreme seasons of winter and summer. The Superensemble had the best success with mean sea level pressure, followed in order by 500hPa geopotential heights, 850hPa winds, and 200hPa winds.In the calculations of 500hPa geopotential height anomaly correlation the Superensemble had higher scores in all comparisons to the ensemble member models, as well as higher scores in the majority of comparisons to the ensemble mean. As with the RMS error results, the Superensemble performed better in the Southern Hemisphere than in the Northern Hemisphere, and better in fall than in summer, in comparison to the other models. The superior anomaly correlation scores of the Superensemble attest to the ability of the model to forecast daily perturbations from the climatological means, perturbations that are associated with transient synoptic scale features, given the horizontal resolution in the forecast models.In terms of systematic error reduction the Superensemble produces its most impressive results. Annual global mean sea-level pressure systematic errors for day 5 forecasts are generally in the range of ±1hPa (compared to errors as high as 8hPa in other models), and day 2 forecasts of 500hPa geopotential height produced systematic errors generally in the range of ±10 meters (compared to errors as high as 60 meters in other models). The Superensemble was able to reduce systematic errors in forecasts of a variety of important features in the global mass and motion fields: surface equatorial trough, wave amplitude in geopotential heights at 500hPa, trade winds and Somali Jet at 850hPa, mid-latitude westerlies, subtropical jet, and Tropical Easterly Jet (TEJ) at 200hPa.In terms of forecasting precipitation the Superensemble outperforms all ensemble member models and the ensemble mean in terms of RMS error, correlation coefficient, equitable threat score, and bias. The superior correlation scores indicate that the Superensemble is more reliable than the other models in predicting perturbations in the area distribution of precipitation, perturbations that are essentially associated with migrant synoptic scale disturbances, considering the horizontal resolution of the forecast models.The Superensemble is a valuable tool for significantly improving upon the global model forecasts of the worlds operational forecast centers. These forecasts are used daily as important guidance in making weather forecasts in all regions of the world. This paper will demonstrate that the Superensemble improves upon the ensemble member model forecasts: (1) in a statistical sense considering broad areas of the globe, (2) in a synoptic climatology sense through focus on the improved forecasts of climatological features seen in the global mass and motion fields, (3) in a synoptic sense through use of anomaly correlation and correlation coefficient where improvement is demonstrated in the forecasts of perturbations from mean fields which are essentially associated with transient synoptic scale disturbances.  相似文献   

14.
East Asian winter monsoon: results from eight AMIP models   总被引:6,自引:0,他引:6  
 This study evaluates simulations of the East Asian winter monsoon in eight GCMs that participated in the Atmospheric Model Intercomparison Project (AMIP). In addition to validating the mean state of the winter monsoon, the cold surge and its transient properties, which includes the frequency, intensity, preferred propagation tracks, and the evolution patterns of the surges, are examined. GCM simulated temporal distribution of the Siberian high and cold surges is also discussed. Finally, the forcing of the cold surges on the tropical surface wind and convection, along with their interannual variation is analyzed. The mean state of the winter monsoon is generally portrayed well in most of the models. These include the climatological position of the Siberian high, the 200 hPa divergent center, and the large-scale wind patterns at the surface and the 200 hPa. Models display a wide range of skill in simulating the cold surge and its transient properties. In some of the models, the simulated cold surge trajectory, intensity, frequency, propagation patterns and source regions are in general agreement with those from the observed. While in others, the models cannot adequately capture these observed characteristics. The temporal distribution of the Siberian high and cold surges were realistically reproduced in most GCMs. Most models were able to simulate the effect of the cold surges on the tropical surface wind, although a few models unrealistically generated subtropical southerly wind in the mid-winter. The relationship between cold surges and the tropical convection was not satisfactorily simulated in most models. The common discrepancies in the winter monsoon simulation can be attributed to many factors. In some models, the reason is directly related to the improper location of the large-scale convective center near the western Pacific. The satisfactory simulations of the monsoon circulation and the cold surges are partly due to the topographical characteristics of the East Asian continent, i.e., the Tibetan Plateau to the west and the oceans to the east. The correct simulation of the interannual variation of the surface wind near the South China Sea (SCS) and the maritime continent is a demanding task for most of the models. This will require adequate simulations of many aspects, including tropical convection, the Siberian cold dome, the extratropical-tropical linkage, and the air-sea interaction. The discrepancies noted here furnish a guide for the continuing improvement of the winter monsoon simulations. Improved simulations will lead to an adequate delineation of the surface wind and convection near the maritime continent, which is essential for portraying the winter monsoon forcing in a coupled model. Received: 10 March 1997/Accepted: 4 June 1997  相似文献   

15.
利用多模式超级集合预报法,以欧洲中期天气预报中心、日本气象厅、德国气象局、中国气象局和中国空军气象中心共5个决定性7 d预报产品为集合成员,对2010年8月500 hPa高度场和850 hPa温度场分别进行固定训练期和滑动训练期超级集合预报。采用均方根误差和相关系数对超级集合预报、单一模式预报和简单集合平均预报进行对比检验,同时对各预报结果的均方根误差空间分布进行对比分析。结果表明:超级集合预报在所有预报结果中最佳,且滑动集合预报对8月后期时段预报要略好于固定集合预报,两者预报效果均好于参与集合预报的各模式,也好于集合平均预报。但随着预报时效的延长,集合平均预报的优势也随之提升。从预报结果均方根误差的空间分布可知,多模式超级集合预报相比于单一模式预报效果提高的区域,500 hPa位势高度场主要位于印度半岛、印度洋、青藏高原及以西地区,而850 hPa温度场则主要位于蒙古、青藏高原、中国新疆及以西地区。  相似文献   

16.
《大气与海洋》2013,51(3):204-223
Abstract

The performance of seasonal hindcasts produced with four global atmospheric models in the second phase of the Canadian Historical Forecasting Project is evaluated. Deterministic and probabilistic forecast skill assessments are carried out using common verification measures. Several methods of combining multi‐model output to produce deterministic and probabilistic forecasts of near‐surface air temperature, 500 hPa geopotential height, and 700 hPa temperature for zero‐month and one‐month leads are considered. A variance‐based weighting modestly improves the skill of deterministic and probabilistic hindcasts in some cases. A parametric Gaussian probability estimator is superior to a non‐parametric count‐method estimator for producing multi‐model probability forecasts. Statistical adjustment is beneficial for deterministic and probabilistic hindcasts of near‐surface temperature over the ocean but not always over land. Skill improves with the number of different models used for a given total ensemble size. The four‐model ensemble is shown to be a reasonable multi‐model configuration.  相似文献   

17.
Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean–atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959–1979) are closer to the ‘perfect model’ (attainable) score but, large differences are observed between ‘actual’ skill and ‘perfect model’ skill in the recent period (1980–2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so perfect monsoon tele-connection with global SSTs points towards the importance of improving individual models for better simulation of the Indian monsoon.  相似文献   

18.
Using a statistical relationship between simulated sea surface temperature and Atlantic hurricane activity, we estimate the skill of a CMIP5 multi-model ensemble at predicting multi-annual level of Atlantic hurricane activity. The series of yearly-initialized hindcasts show positive skill compared to simpler forecasts such as persistence and climatology as well as non-initialized forecasts and return anomaly correlation coefficients of ~0.6 and ~0.8 for five and nine year forecasts, respectively. Some skill is shown to remain in the later years and making use of those later years to create a lagged-ensemble yields, for individual models, results that approach that obtained by the multi-model ensemble. Some of the skill is shown to come from persisting rather than predicting the climate shift that occur in 1994–1995. After accounting for that shift, the anomaly correlation coefficient for five-year forecasts is estimated to drop to 0.4, but remains statistically significant up to lead years 3–7. Most of the skill is shown to come from the ability of the forecast systems at capturing change in Atlantic sea surface temperature, although the failure of most systems at reproducing the observed slow down in warming over the tropics in recent years leads to an underestimation of hurricane activity in the later period.  相似文献   

19.
 The predictability of atmospheric responses to global sea surface temperature (SST) anomalies is evaluated using ensemble simulations of two general circulation models (GCMs): the GENESIS version 1.5 (GEN) and the ECMWF cycle 36 (ECM). The integrations incorporate observed SST variations but start from different initial land and atmospheric states. Five GEN 1980–1992 and six ECM 1980–1988 realizations are compared with observations to distinguish predictable SST forced climate signals from internal variability. To facilitate the study, correlation analysis and significance evaluation techniques are developed on the basis of time series permutations. It is found that the annual mean global area with realistic signals is variable dependent and ranges from 3 to 20% in GEN and 6 to 28% in ECM. More than 95% of these signal areas occur between 35 °S–35 °N. Due to the existence of model biases, robust responses, which are independent of initial condition, are identified over broader areas. Both GCMs demonstrate that the sensitivity to initial conditions decreases and the predictability of SST forced responses increases, in order, from 850 hPa zonal wind, outgoing longwave radiation, 200 hPa zonal wind, sea-level pressure to 500 hPa height. The predictable signals are concentrated in the tropical and subtropical Pacific Ocean and are identified with typical El Ni?o/ Southern Oscillation phenomena that occur in response to SST and diabatic heating anomalies over the equatorial central Pacific. ECM is less sensitive to initial conditions and better predicts SST forced climate changes. This results from (1) a more realistic basic climatology, especially of the upper-level wind circulation, that produces more realistic interactions between the mean flow, stationary waves and tropical forcing; (2) a more vigorous hydrologic cycle that amplifies the tropical forcing signals, which can exceed internal variability and be more efficiently transported from the forcing region. Differences between the models and observations are identified. For GEN during El Ni?o, the convection does not carry energy to a sufficiently high altitude, while the spread of the tropospheric warming along the equator is slower and the anomaly magnitude smaller than observed. This impacts model ability to simulate realistic responses over Eurasia and the Indian Ocean. Similar biases exist in the ECM responses. In addition, the relationships between upper and lower tropospheric wind responses to SST forcing are not well reproduced by either model. The identification of these model biases leads to the conclusion that improvements in convective heat and momentum transport parametrizations and basic climate simulations could substantially increase predictive skill. Received: 25 April 1996 / Accepted: 9 December 1996  相似文献   

20.
In this study, the climate mean, variability, and dominant patterns of the Northern Hemisphere wintertime mean 200 hPa geopotential height (Z200) in a CMIP and a set of AMIP simulations from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2) are analyzed and compared with the NCEP/NCAR reanalysis. For the climate mean, it is found that a component of the bias in stationary waves characterized with wave trains emanating from the tropics into both the hemispheres can be attributed to the precipitation deficit over the Maritime continent. The lack of latent heating associated with the precipitation deficit may have served as the forcing of the wave trains. For the variability of the seasonal mean, both the CMIP and AMIP successfully simulated the geographical locations of the major centers of action, but the simulated intensity was generally weaker than that in the reanalysis, particularly for the center over the Davis Strait-southern Greenland area. It is also noted that the simulated action center over Aleutian Islands was southeastward shifted to some extent. The shift was likely caused by the eastward extension of the Pacific jet. Differences also existed between the CMIP and the AMIP simulations, with the center of actions over the Aleutian Islands stronger in the AMIP and the center over the Davis Strait-southern Greenland area stronger in the CMIP simulation. In the mode analysis, the El Nino-Southern Oscillation (ENSO) teleconnection pattern in each dataset was first removed from the data, and a rotated empirical orthogonal function (REOF) analysis was then applied to the residual. The purpose of this separation was to avoid possible mixing between the ENSO mode and those generated by the atmospheric internal dynamics. It was found that the simulated ENSO teleconnection patterns from both model runs well resembled that from the reanalysis, except for a small eastward shift. Based on the REOF modes of the residual data, six dominant modes of the reanalysis data had counterparts in each model simulation, though with different rankings in explained variance and some distortions in spatial structure. By evaluating the temporal coherency of the REOF modes between the reanalysis and the AMIP, it was found that the time series associated with the equatorially displaced North Atlantic Oscillation in the two datasets were significantly correlated, suggesting a potential predictability for this mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号