首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relation between the nitrate and phosphate concentrations in the Sea of Okhotsk and the bordering waters of the Pacific Ocean were studied. The surveys were carried out in the autumn, spring, and summer of 2001–2002. For the deepwater part of the sea, the relation [NO? 3] = ((14.88 ± 0.07) × [PO3? 4] ? 5.46 ± 0.17) was found. The coefficients in the equation given are statistically different from those in the similar equation for the Pacific waters: [NO? 3] = (16.05 ± 0.15) × [PO3? 4]-(7.23 ± 0.36). In the northern part of the sea; on the shelf; in the slope area; and, especially, in the deep waters of the TINRO Depression, the linear dependence between the phosphate and nitrate concentrations was distorted. This feature was described in terms of nitrate deficiency. The maximum values of this deficiency were found in the near-bottom waters. The principal processes that might cause the nitrate deficiency were considered: the difference in the oxidation rates of the nitrogen and phosphorus organic compounds, the matter transfer between the continent and the sea, the different efficiency of the biogenic burial of nitrogen and phosphorus in the bottom sediments, and the denitrification in the upper layer of the bottom sediments. It was shown that the most probable cause of the nitrate deficiency was the denitrification. The loss of inorganic nitrogen owing to the supply of the waters of the Sea of Okhotsk to the Pacific Ocean was estimated as ~2.5 × 1011 mol N/year.  相似文献   

2.
Using the data obtained in 1999–2000 during the spring bloom of phytoplankton (late May–early June), the variability of the pigment concentrations, the phytoplankton biomass and species compositions, and the hydrological conditions on the eastern shelf of Sakhalin Island was studied. The study resulted in revealing 135 microalgae species belonging to eight divisions. The most diversely presented were the Dinophyta dinoflagellates and Bacillariophyta diatoms (70 and 53 species, respectively). The concentration of chlorophyll a in the euphotic zone amounted, on average, to 3.8 mg/m3 in 1999 and 2.4 mg/m3 in 2000. It was shown that, in the northern and southern parts of the coastal zone, the concentration of chlorophyll a and the phytoplankton density in the spring were considerably different and depended on the hydrological conditions. In the north, their maximum values were found in the area of the depth break and were determined by the tidal mixing. The increased algae concentrations and temperature inversions at depths of 400–600 m confirm the downslope sliding of the near-bottom shelf waters. In the southern part, the high phytoplankton concentrations in the surface layer in 1999 confirmed by the monthly averaged estimates from the SeaWiFS satellite color scanner were caused by the abnormal northward propagation of the Soya Current waters and by intense tidal mixing.  相似文献   

3.
The areas that we studied in the North Atlantic (53 and 60°N) and in the Labrador Sea in the summer were characterized by a wide variability of the concentrations of dissolved and particulate organic matter and its elemental composition both in the surface and in the deep waters. The concentrations of dissolved and particulate Corg varied within 69–360 μM and 0.7–25.6 μM, respectively; the Norg and Porg contents varied within 1.4–22.2 μM and 0.02–0.86 μM, respectively. The maximal concentrations were registered in the photic layer and in the zones of mixing between the waters of different genesis. The particulate matter contribution to the total organic matter (OM) content varied from 0.5 to 15.4%. The waters of the photic layer contained more particulate Corg than those of the near-bottom layer. The values of the C/N molar ratios from the surface to the bottom over the entire aquatic area surveyed varied 5-to 6-fold; at that, the values of the C/P molar ratios varied more than tenfold. In the most productive waters, the values of the C/N ratios were close to the Redfield ratios (6–10). The values of the C/P molar ratios varied from 160 in the photic layer to 4831 in the deep waters. The pronounced non-uniformity in the spatial distribution of the OM and its elemental composition is caused not only by the penetration of the waters of different origins but also by the changes in the microplankton metabolism under mixing of these waters.  相似文献   

4.
The magnitude of the exchange flux at the water–sediment interface was determined on the basis of the ammonia concentration gradient at the near-bottom water–interstitial interface and Fick's first law. It was established that in Puck Bay, ammonia almost always passes from the sediment to water. Ammonia flux varied from 5 to 1434 μmol NH4-N m−2 day−1. In total,c. 138·2 tonneammonia year−1pass from sediments of Internal Puck Bay to near-bottom water, the equivalent value for External Puck Bay being 686·9 tonne year−1. In total, about 825 tonne ammonia year−1passes from the sediment to near-bottom water of Puck Bay. In interstitial waters, ammonia occurred in concentrations varying over a wide range (3–1084 μmol NH4-N dm−3).The basic factors affecting the magnitude of ammonia concentration in interstitial waters included: oxidation of organic matter, type of sediment, and inflow of fresh underground waters to the region examined.This paper involves preliminary studies only and constitutes a continuation of the studies on ionic macrocomponents and phosphorus in interstitial waters of Puck Bay undertaken previously.  相似文献   

5.
Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites have unique advantages for monitoring coastal waters, owing to their high spatial resolution (250?m), short revisit period (1–2?days), and freedom from cost. An empirical retrieval model for concentration of total suspended matter (TSM) has been developed based on a statistical analysis of field surveys of TSM and remote sensing reflectance (R rs) in the Bohai Sea of China. A robust linear relationship was established between the equivalent remote sensing reflectance (converting ASD-measured R rs by spectral response function) in the 620–670?nm band (band 1) of MODIS and the concentration of TSM (R 2?=?0.95; n?=?27; RMS?=?0.512) acquired in August and September 2008. The model was validated via in situ measurements in September 2009, resulting in a mean relative error of 12.9?%. Then, the corresponding MODIS products of monthly average concentration of TSM were produced from January to December 2009. The distribution characteristics of TSM in the Bohai Sea of China are closely related with the spatial pattern and seasonal variability. This study demonstrates that the moderately high resolution of MODIS 250?m data is available for monitoring the transport and fate of materials in relatively smaller bodies of water.  相似文献   

6.
The spatial distribution of the primary production (PP) and the chlorophyll a concentration (Chl) were investigated during two research cruises in the Drake Passage area in October–November of 2007 and 2008. The algorithm evaluating the integral PP (PPint) for the water column in this area was developed based on the data on the surface chlorophyll (Chls) and the incident solar irradiance obtained in 2004–2008 in the Atlantic Sector of the Southern Ocean. The results obtained both by the experimental and model approaches suggested that the Polar Front (PF) region of the Drake Passage was characterized by low values of both the PPint (<100 mg C/m2 per day) and Chls (0.08–0.20 mg/m3) in October–November. Low values of the Chls and relatively high phaeophytine a concentrations indicated the winter succession state of the phytoplankton community in the Antarctic Ocean and the southern Polar Frontal Zone (PFZ). The seasonal warming of the surface water layers and the developing pycnocline resulted in a phytoplankton bloom and a Chls concentration of more than 1 mg/m3 in mid-November in this area and the Subantarctic waters.  相似文献   

7.
Expected seasonal variations in methane concentrations and diffusive fluxes from surficial sediments into near-bottom waters were investigated in autumn 2012 and winter 2013 in the Curonian and Vistula lagoons of the Baltic Sea, expanding on earlier findings for summer 2011. Methane concentrations in bottom sediments (upper ca. 2 cm) generally ranged from ca. 1 to 1,000 μmol/dm3, and in near-bottom waters from ca. 0 to 1 μmol/l. Highest concentrations were found in the Curonian Lagoon, plausibly explained by the influence of freshwater conditions and finer-grained, organic-rich sediments. Vistula Lagoon methane concentrations and fluxes are dampened by periodic saline water inflow from the open sea, intensifying sulphate reduction. Calculated diffusive methane fluxes from the upper sediment layer (usually 0–5 cm, i.e. excluding any fluffy layer) into near-bottom waters were highest—2.48 mmol/(m2 day)—in clayey silts of the Curonian Lagoon in autumn (September) 2012, contrasting strongly with the minimum value of 0.002 mmol/(m2 day) observed there in February 2013 under ice-covered conditions. Seasonal and even weekly variations in methane dynamics can be largely explained by two main drivers, i.e. wind and temperature, operating at various spatiotemporal scales via, for example, wind wave-induced resuspension of bottom sediments, and involving regional weather patterns including autumnal low-pressure zones over the Gulf of Gdansk.  相似文献   

8.
The isotopic and ionic composition of pure gas hydrate (GH) water was examined for GHs recovered in three gravity cores (165–193 cm length) from the Kukuy K-9 mud volcano (MV) in Lake Baikal. A massive GH sample from core St6GC4 (143–165 cm core depth interval) was dissociated progressively over 6 h in a closed glass chamber, and 11 sequentially collected fractions of dissociated GH water analyzed. Their hydrogen and oxygen isotopic compositions, and the concentrations of Cl and HCO3 remained essentially constant over time, except that the fraction collected during the first 50 minutes deviated partly from this pattern. Fraction #1 had a substantially higher Cl concentration, similar to that of pore water sampled immediately above (135–142 cm core depth) the main GH-bearing interval in that core. Like the subsequent fractions, however, the HCO3 concentration was markedly lower than that of pore water. For the GH water fractions #2 to #11, an essentially constant HCO3 /Cl ratio of 305 differed markedly from downcore pore water HCO3 /Cl ratios of 63–99. Evidently, contamination of the extracted GH water by ambient pore water probably adhered to the massive GH sample was satisfactorily restricted to the initial phase of GH dissociation. The hydrogen and oxygen isotopic composition of hydrate-forming water was estimated using the measured isotopic composition of extracted GH water combined with known isotopic fractionation factors between GH and GH-forming water. Estimated δD of ?126 to ?133‰ and δ18O of ?15.7 to ?16.7‰ differed partly from the corresponding signatures of ambient pore water (δD of ?123‰, δ18O of ?15.6‰) and of lake bottom water (δD of ?121‰, δ18O of ?15.8‰) at the St6GC4 coring site, suggesting that the GH was not formed from those waters. Observations of breccias in that core point to a possible deep-rooted water source, consistent with published thermal measurements for the neighboring Kukuy K-2 MV. By contrast, the pore waters of core St6GC4 and also of the neighboring cores GC2 and GC3 from the Kukuy K-9 MV show neither isotopic nor ionic evidence of such a source (e.g., elevated sulfate concentration). These findings constrain GH formation to earlier times, but a deep-rooted source of hydrate-forming water remains ambiguous. A possible long-term dampening of key deep-water source signatures deserves further attention, notably in terms of diffusion and/or advection, as well as anaerobic oxidation of methane.  相似文献   

9.
Sediment transport in the Yellow Sea and East China Sea   总被引:2,自引:0,他引:2  
Eight survey cruises in different seasons have been conducted in the Yellow Sea (YS) and East China Sea (ECS) during the period from 2000 to 2008. Suspended sediment concentration (SSC) and hydrological data were collected during each cruise. Data analysis showed that total suspended sediment mass was approximately 0.18 × 109 tons in the surveyed area during spring and autumn seasons. Highly turbid waters were found in the shallow waters between the Subei coast, the Changjiang estuary and the Zhejiang coast with seasonal variations.  相似文献   

10.
Spectrophotometric measurements are reported for the first apparent dissociation constant of hydrogen sulfide in seawater over the temperature range 7.5–25°C and 2–35.8‰ salinity. These data are described by the expression pK1′ = 2.527 ? 0.169 Cl13 + 1359.96/T. The second apparent dissociation constant in potassium chloride solution was estimated potentiometrically using a sulfide specific ion electrode. A value of ~13.6 was found for pK2′ at a KCl concentration of 0.67 M. It is suggested that explicit reference to the sulfide ion, S2?, in describing equilibria in marine waters be dropped in favor of a formulation involving the bisulfide ion, HS?.  相似文献   

11.
The data on the isotopic composition of particulate organic carbon (δ13CPOC) in the Caspian Sea water in summer–autumn 2008, 2010, 2012, and 2013 are discussed in the paper. These data allowed as to reveal the predominant genesis of organic carbon in suspended particulate matter of the active seawater layer (from 0 to 40 m). The δ13CPOC =–27‰ (PDB) and δ13CPOC =–20.5‰ (PDB) values were taken as the reference data for terrigenous and planktonogenic organic matter, respectively. Seasonal (early summer, late summer, and autumn) variations in the composition of suspended particulate matter in the active sea layer were revealed. A shift of δ13CPOC towards greater values was seen in autumn (with a slight outburst in the development (bloom) of phytoplankton) in comparison with summer (with large accumulations and an extraordinary phytoplankton bloom confined to the thermocline area). The seasonal dynamics of autochthonous and allochthonous components in the suspended particulate matter of the Middle and Southern Caspian Sea was studied with the use of data on the concentration of particulate matter and chlorophyll a, the phytoplankton biomass and the POC content.  相似文献   

12.
In October and November 2002, high and relatively high values of the chlorophyll a concentration at the sea surface (C chl) were observed in the English Channel (0.47 mg/m3), in the waters of the North Atlantic Current (0.25 mg/m3), in the tropical and subtropical anticyclonic gyres (0.07–0.42 mg/m3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11–0.23 mg/m3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of C chl (0.02–0.08 mg/m3 for the SATG and 0.07–0.14 mg/m3 for the NATR). At most of the SATG stations, the values of the surface primary production (C phs) varied from 2.5 to 5.5 mg C/m3 per day and were mainly defined by the fluctuations of C chl (r = +0.78) rather than by those of the assimilation number (r = +0.54). The low assimilation activity of phytoplankton in these waters (1.3–4.6 mg chl a per hour) pointed to a lack of nutrients. An analysis of the variability of their concentration and the composition of photosynthetic pigments showed that, in the waters north of 30° N, the growth of phytoplankton was mostly restricted by the deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), the phosphorus concentrations were the minimum. At the low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In the tropical waters and in the waters of the SATG, the primary production throughout the water column varied from 240 to 380 mg C/m2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m3) was provided by a well-developed deep chlorophyll maximum and a high transparency of the water. The light curves of photosynthesis based on in situ measurements point to the high efficiency of utilizing the penetrating solar radiation by phytoplankton on cloudy days.  相似文献   

13.
In the course of the expedition of the Pacific Oceanological Institute in August 2007, extensive hypoxia was found in the near-bottom layer of the Amur Bay water mass. The hypoxia’s formation was immediately reflected in the values and distribution of the carbonate parameters in the near-bottom waters of the bay. The maximum values of the carbon dioxide partial pressure, the dissolved inorganic carbon, and the total alkalinity were associated with the areas of the minimum oxygen content. The microbial destruction of the dead phytoplankton greatly increased the partial pressure of carbon dioxide, which was over 2000 μatm in the hypoxia centers at a depth of about 20 m. At the same time, the carbon dioxide partial pressure in the surface waters of Amur Bay was considerably lower than that in the atmosphere. Hence, the bay’s aquatic area was a sink for the atmospheric CO2 despite its high content in the near-bottom waters. It was shown that the excess alkalinity associated with the hypoxia sites in the near-bottom layer of water was caused by the sulfate reduction proceeding in the upper layer of the sediment.  相似文献   

14.
Dissolved and total dissolvable manganese concentrations have been measured at four stations in the western North Atlantic Ocean. Total dissolvable manganese concentrations are high in surface waters, decrease to uniformly low levels throughout the bulk of the water column, and increase in the bottom nepheloid layer. Dissolved Mn (Mnd) concentrations follow the total dissolvable concentrations throughout the surface and deep waters but do not increase in the near-bottom waters.Deep water concentrations of Mnd decrease from 30 ng l?1 in the Newfoundland Basin to 20 ng l?1 in the Sargasso Sea. This change and other features of the deep water distribution of dissolved manganese could be associated with the slow oxidation of Mn2+ to MnO2. There is also evidence at one station of scavenging of manganese from the dissolved phase in the near-bottom layer which may again be related to the kinetics of manganese oxidation.  相似文献   

15.
During the spring-neap period of 17–24 August 2004, turbidity, horizontal and vertical current velocities and echo intensity were measured using OBS-3A and ADP-XR instruments over an intertidal flat within the semi-enclosed Jiaozhou Bay, China, to examine patterns in suspended sediment concentration (SSC) and possible control factors. SSC was found to be lower than 30 mg l−1 in most of the water column and for most of the tidal cycle. This is attributed mainly to the low hydrodynamic energy, in particular weak currents (near-bottom maximum 1- and 8-min-interval velocities were only 26.1 and 14.2 cm s−1, respectively), and limited fine-grained sediment supply by rivers. However, high SSC values ranging from 100 to >1,000 mg l−1 occurred over short periods at the beginning and the end of inundation. This phenomenon is attributed to the shoaling effect of frequent wind-generated waves, as a result of which near-bottom SSC fluctuations display a U-shaped trend during each tidal cycle.  相似文献   

16.
太平洋悬浮体特征及近底雾状层(雾浊层)探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
2005年在太平洋12个测站分层采集了悬浮体水样及连续的水体温度、盐度、深度等数据.利用水体悬浮体含量在垂向上的分布特征初步分析了大洋雾状层的特点,并讨论了水体中悬浮体颗粒物质的来源,对不同海洋环境中悬浮体分布进行了对比,发现大洋水体中悬浮体含量总体很小,一般不超过0.30mg/dm3,但在一定水层内悬浮体含量相对较高,形成雾状层.雾状层在大洋内广泛分布,一般以表层雾状层和近底雾状层形式存在.大洋水体中悬浮体颗粒物来源广泛.表层雾状层的形成主要受透光层内生物作用的影响,而底质沉积物的再悬浮是影响底部雾状层形成的重要因素.因受水体物理海洋环境和物质来源的影响,不同区域水体中悬浮体含量不同,雾状层的分布不同.海山顶部受水流及岩石基底影响雾状层分布不明显,海山底部与开辟区洋盆海域雾状层更普遍.开辟区东西区由于物源差异水体中悬浮体含量差别明显,靠近火山喷口的西区水体中悬浮体含量明显高于东区的.  相似文献   

17.
根据2013—2016年春季(5月)长江口及其邻近海域4个航次环境综合调查数据,探讨春季长江口水体颗粒有机碳(POC)时空分布特征及其环境影响因素。结果显示:2013—2016年春季长江口POC浓度范围为0.22~16.99 mg/L,均值为1.80 mg/L,总水域POC年际间变化显著,底层浓度高于表层。从口门区、近岸区和近海区三个子水域来看,除近岸底层POC浓度处于高值,年际差异不显著之外,其余水域的表、底层均存在空间变异和年际差异。POC浓度在口门附近偏南部水域达到高值,后沿长江冲淡水(CDW)方向降低,低值区位于近海底层,但表层POC在近海水域123°E附近出现次高值。POC浓度与盐度之间具有显著负相关关系,且相关性逐年递减;POC浓度与总悬浮物浓度(TSM)呈显著正相关,底层相关性高于表层;近海区表层POC与叶绿素a正相关关系极显著,二者高值区均分布在123°E附近。入海径流量与长江口春季POC浓度呈现出截然相反的年际变化趋势,径流对有机碳的稀释作用高于其输入作用。长江口春季POC主要以碎屑源为主,其分布与有机碳源、海水的稀释作用、悬浮物运动等多种因素有关,高浊水体中悬浮物影响显著,陆源有机碳对POC的影响在长江口近海水域有所弱化,而浮游植物对POC的贡献凸显。  相似文献   

18.
The data on the qualitative and quantitative variability of the organic matter (OM) and its transformation rates in the waters of the Ob Inlet during different seasons are considered. The OM distribution was quite nonuniform over the entire Ob Inlet aquatic area: the concentrations of Corg varied from 2.8 to 14.1 mg/L and from 0.32 to 4.59 mg/L for the dissolved and particulate forms, respectively. The maximum concentrations of dissolved OM were registered in the main flow of the Ob River water supplied to the bay, whereas the minimum concentrations were characteristic for the near-bottom layers formed by the Kara Sea waters of high salinity in the northern part of the bay. Both in the summer and in the autumn, the fraction of particulate matter within the total OM reached its maximum values in the mixing zone of the Taz and Ob riverine waters, as well as in the mixing zone of the Ob River and Kara Sea waters. These boundary zones were characterized by the widest variability of the elemental (C: N: P) and biochemical (proteins and carbohydrates) composition of the OM, as well as of its transformation rates measured by the activities of the enzymes (alkaline phosphatase and the electron transport system).  相似文献   

19.
Methane fluxes in the southeastern Baltic Sea   总被引:2,自引:2,他引:0  
New data from surveys of gas-bearing mud areas in the Gdansk Deep (southeastern Baltic Sea) were collected during four research cruises in 2009–2011. These revealed the presence of seven large pockmarks apart from the three already known, and enabled significant improvement of the existing digital map of gassy mud distribution. Based on geochemical sediment analyses, calculated diffusive methane fluxes from the upper (0–5?cm) seabed layer into near-bottom waters were highest—3.3?mmol/(m2?day)—in pockmark mud, contrasting strongly with the minimum value of 0.004?mmol/(m2?day) observed in typical, background mud. However, fluxes of less than 0.1?mmol/(m2?day) were observed in all sediment types, including pockmarks. In a newer attempt to roughly estimate budgets at a more regional scale, diffusive methane venting amounts to 280?×?106?mmol/day for southeastern Baltic Sea muddy sediments. Elongated pockforms in the southern Gotland Deep, known since the end of the 1980s as pockmarks, had methane concentrations that were similar to those of gassy mud from the Gdansk Basin, and there was no geo-acoustic evidence of considerably increased gas levels.  相似文献   

20.
Hong Kong waters receive high nutrient loading from year-round sewage effluent and Pearl River discharge during the summer wet season. We assessed the role of physical processes in reducing eutrophication by calculating a eutrophication reduction index for four different hydrographical areas and four seasons. We used outdoor incubation experiments to assess the response of phytoplankton when physical (mixing and dilution) processes and mesozooplankton grazing were reduced. The primary regulator of phytoplankton growth in low nutrient eastern waters (reference site) shifted from nutrients in the wet season to increased vertical mixing in the dry season. In the highly flushed western waters and Victoria Harbour, the majority (>86?%) of the eutrophication impacts were reduced by strong hydrodynamic mixing (turbulence, vertical mixing, and flushing effects) all year. In southern waters, eutrophication effects were severe (chlorophyll a of up to ~73?μg?L?1) and was regulated by the ambient phosphate (PO4) concentration (~0.1?μM) during summer. In contrast, 62–96?% of the potential eutrophication impacts were reduced by physical processes during other seasons. Bioassays also revealed that the yield of chlorophyll from dissolved inorganic nitrogen (DIN) that was taken up by phytoplankton [1.1–3.3?g?Chl (mol?N)?1] was not significantly different in both N- and P-limited cases. In contrast, the uptake ratios of DIN:PO4 (26:1–105:1) and Chl:P ratios [42–150?g?Chl (mol?P)?1] in the P-limited cases were significantly (p?<?0.05, t test) higher than the N-limited cases [~16DIN:1P and 22–48?g?Chl (mol?P)?1]. The C:Chl ratios ranged from 32 to 87?g?g?1. These potential ranges in ratios need to be considered in future nutrient models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号