首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
大气科学   6篇
地球物理   5篇
地质学   9篇
海洋学   16篇
天文学   10篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   3篇
  2010年   5篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
Cathodoluminescence (CL) analyses were carried out on maskelynite and lingunite in L6 chondrites of Tenham and Yamato-790729. Under CL microscopy, bright blue emission was observed in Na-lingunite in the shock veins. Dull blue-emitting maskelynite is adjacent to the shock veins, and aqua blue luminescent plagioclase lies farther away. CL spectroscopy of the Na-lingunite showed emission bands centered at ~330, 360–380, and ~590 nm. CL spectra of maskelynite consisted of emission bands at ~330 and ~380 nm. Only an emission band at 420 nm was recognized in crystalline plagioclase. Deconvolution of CL spectra from maskelynite successfully separated the UV–blue emission bands into Gaussian components at 3.88, 3.26, and 2.95 eV. For comparison, we prepared K-lingunite and experimentally shock-recovered feldspars at the known shock pressures of 11.1–41.2 GPa to measure CL spectra. Synthetic K-lingunite has similar UV–blue and characteristic yellow bands at ~550, ~660, ~720, ~750, and ~770 nm. The UV–blue emissions of shock-recovered feldspars and the diaplectic feldspar glasses show a good correlation between intensity and shock pressure after deconvolution. They may be assigned to pressure-induced defects in Si and Al octahedra and tetrahedra. The components at 3.88 and 3.26 eV were detectable in the lingunite, both of which may be caused by the defects in Si and Al octahedra, the same as maskelynite. CL of maskelynite and lingunite may be applicable to estimate shock pressure for feldspar-bearing meteorites, impactites, and samples returned by spacecraft mission, although we need to develop more as a reliable shock barometer.  相似文献   
2.
International Journal of Earth Sciences - Early diagenetic carbonates are rare in Lake Baikal. Siderite (Fe carbonate) concretions in the sediments were discovered only recently. Here, we discuss...  相似文献   
3.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   
4.
This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5?kJ?mol–1 for the southern basin samples (structure I), and of 54.3–55.5?kJ?mol–1 for the structure I hydrates and 62.8–64.2?kJ?mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.  相似文献   
5.
Thermal measurements and hydrate mapping in the vicinity of the K-2 mud volcano in Lake Baikal have revealed a particular type of association of thermal anomalies (29–121?mW?m–2) near hydrate-forming layers. Detailed coring within K-2 showed that hydrates are restricted to two distinct zones at sub-bottom depths exceeding 70–300?cm. Temperature data from stations with hydrate recovery and degassing features all display low thermal gradients. Otherwise, the thermal gradients within the mud volcano are generally increased. These findings imply a more complicated thermal regime than often assumed for mud volcanoes, with important roles for both fluids and hydrates. The coexistence of neighbouring low and high thermal anomalies is interpreted to result from discharging and recharging fluid activity, rather than hydrate thermodynamics. It is suggested that hydrates play a key role in controlling the fluid circulation pattern at an early stage. At a later stage, the inflow of undersaturated lake water would favour the dissolution of structure I hydrates and the formation of structure II hydrates, the latter having been observed on top of structure I hydrates in the K-2 mud volcano.  相似文献   
6.
Mitigating Agricultural Emissions of Methane   总被引:7,自引:0,他引:7  
Agricultural crop and animal production systems are important sources and sinks for atmospheric methane (CH4). The major CH4 sources from this sector are ruminant animals, flooded rice fields, animal waste and biomass burning which total about one third of all global emissions. This paper discusses the factors that influence CH4 production and emission from these sources and the aerobic soil sink for atmospheric CH4 and assesses the magnitude of each source. Potential methods of mitigating CH4 emissions from the major sources could lead to improved crop and animal productivity. The global impact of using the mitigation options suggested could potentially decrease agricultural CH4 emissions by about 30%.  相似文献   
7.
Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal   总被引:1,自引:0,他引:1  
This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.  相似文献   
8.
Abstract. The Umanotani-Shiroyama pegmatite deposits, the largest producer of K-feldspar and quartz in Japan, are of typical granitic pegmatite. Ilmenite-series biotite granite and granite porphyry, hosting the ore deposits, and biotites separated from these rocks yielded K-Ar ages ranging from 89.0 to 81.4 Ma and 95.2 to 93.7 Ma, respectively. Muscovite and K-feldspar separated from the ore zone yielded K-Ar ages with the range of 96.2 to 93.1 Ma and 87.3 to 80.7 Ma, respectively. Muscovites from quartz-muscovite veins in the ore zone and in the granite porphyry yielded K-Ar ages of 90.4 and 76.3 Ma, respectively. K-feldspar is much younger in age than coexisting muscovite. It is noted that the K-Ar ages of biotite separates and the whole-rock ages are identical to those of muscovite and K-feldspar in the ore zone, respectively. These time relations, as well as field occurrence, indicate that the formation of the pegmatite deposits at the Umanotani-Shiroyama mine is closely related in space and time to a series of granitic magmatism of ilmenite-series nature. Using closure temperatures of the K-Ar system for biotite and K-feldspar (microcline), cooling rate of the pegmatite deposits is estimated to be about 82C/m.y. at the beginning, but slowed down to about 15C/m.y. in the later period.  相似文献   
9.
Earthquake observations and microtremor measurements were conducted on a 12-storey steel-reinforced concrete building just after its completion. Marked stiffness deterioration was observed over the following five-year period, during which time several earthquakes were recorded and two additional series of microtremor measurements were made. The large contribution made by non-structural elements (especially the curtain walls that cover all sides of the building) to the apparent stiffness of the entire building was lost during this period. Both ageing effects and stiffness reductions depend greatly on the amplitude of the structural response of this building.  相似文献   
10.
Rice paddies as a methane source   总被引:8,自引:0,他引:8  
Rice fields are considered to be among the highest sources of atmospheric methane, an important source of global warming. In order to meet the projected rice needs of the increasing world population, it is estimated that the annual world's rough rice production must increase to 760 million tons (a 65% increase) in the next 30 years. This will increase methane emissions from ricefields if current technologies are kept. Methane emissions from ricefields are affected by climate, water regime, soil properties, and various cultural practices like irrigation and drainage, organic amendments, fertilization, and rice cultivars. Irrigated rice comprises 50% of the world-harvested rice area and contributes 70% to total rice production. Because of assured flooding during the growing period it is the primary source of methane. Rainfed rice emits less methane due to periods of droughts. Upland rice, being never flooded for a significant period of time, is not a significant source of methane. There is great potential to develop no regret mitigation options that are in accordance with increasing rice production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号