首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5?kJ?mol–1 for the southern basin samples (structure I), and of 54.3–55.5?kJ?mol–1 for the structure I hydrates and 62.8–64.2?kJ?mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.  相似文献   

2.
Side-scan sonar mapping and ground-truthing of the Norwegian–Barents–Svalbard continental margin shed new light on shelf glaciation, mass wasting, hydrates, and features like the Håkon Mosby mud volcano (HMMV), reflecting upward mobility of gas, pore fluids, and sediments. Detailed HMMV examination revealed thermal gradients to 10°/m, bottom-water CH4 and temperature anomalies, H2S- and CH4-based chemosynthetic ecosystems, and subbottom methane hydrate (to 25%). Seismic and chemical data suggest HMMV origins at 2–3?km depth within the 6-km-thick depocenter. The HMMV and mound fields bordering the Bjørnøyrenna slide valley and pockmarks bordering the Storegga slide may all have formed in response to sediment failure.  相似文献   

3.
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.  相似文献   

4.
Gas hydrate accumulation at the Håkon Mosby Mud Volcano   总被引:1,自引:1,他引:0  
Gas hydrate (GH) accumulation is characterized and modeled for the Håkon Mosby mud volcano, ca. 1.5?km across, located on the Norway–Barents–Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108?m3 STP, which could account for about 1–10% of the gas that has escaped from the volcano since its origin.  相似文献   

5.
Detailed multibeam, sedimentological, and geophysical surveys provide ample new data to confirm that the Anaximander Mountains (Eastern Mediterranean) are an important area for active mud volcanism and gas hydrate formation. More than 3000 km of multibeam track length was acquired during two recent missions and 80 gravity and box cores were recovered. Morphology and backscatter data of the study area have better resolution than previous surveys, and very detailed morphology maps have been made of the known targeted mud volcanoes (Amsterdam, Kazan and Kula), especially the Amsterdam “crater” and the related mud breccia flows. Gas hydrates collected repeatedly from a large area of Amsterdam mud volcano at a sub-bottom depth of around 0.3–1.5 m resemble compacted snow and have a rather flaky form. New gas hydrate sites were found at Amsterdam mud volcano, including the mud flow sloping off to the south. Gas hydrates sampled for the first time at Kazan mud volcano are dispersed throughout the core samples deeper than 0.3 m and display a ‘rice’-like appearance. Relative chronology and AMS dating of interbedded pelagic sediments (Late Holocene hemipelagic, sapropel layer S1 and ash layers) within the mud flows indicate that successive eruptions of Kula mud volcano have a periodicity of about 5–10 kyrs. New mud volcanoes identified on the basis of multibeam backscatter intensity were sampled, documented as active and named “Athina” and “Thessaloniki”. Gas hydrates were sampled also in Thessaloniki mud volcano, the shallowest (1264 m) among all the active Mediterranean sites, at the boundary of the gas hydrate stability zone. Biostratigraphical analyses of mud breccia clasts indicated that the source of the subsurface sedimentary sequences consists of Late Cretaceous limestones, Paleocene siliciclastic rocks, Eocene biogenic limestones and Miocene mudstones. Rough estimations of the total capacity of the Anaximander mud volcanoes in methane gas are 2.56–6.40 km3.  相似文献   

6.
We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and δ13C-CH4 values of ?50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas–sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO 4 2? and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.  相似文献   

7.
Meteor cruise M52/1 documented the presence of gas hydrates in sediments from mud volcanoes in the Sorokin Trough of the Black Sea. In a mud flow on the Odessa mud volcano, a carbonate crust currently forms in association with anaerobic methane oxidation. Dvurechenskii mud volcano (DMV), a flat-topped mud pie-type structure, appeared to be very active. Pore water in sediments of DMV is enriched in several constituents, such as ammonium and chloride, which seem to originate at depth. High sediment temperatures of up to 16.5 °C in close contact to the ambient bottom water of 9 °C also suggest strong advective transport of material from greater depth. Steep temperature gradients indicate a high fluid and/or mud flux within DMV, which is confirmed by the shape of the pore water profiles. Active fluid expulsion sites are evidenced by direct seafloor observation, and a potential flux of methane from the sediment to the bottom water is indicated by water-column methane measurements.  相似文献   

8.
9.
The isotopic and ionic composition of pure gas hydrate (GH) water was examined for GHs recovered in three gravity cores (165–193 cm length) from the Kukuy K-9 mud volcano (MV) in Lake Baikal. A massive GH sample from core St6GC4 (143–165 cm core depth interval) was dissociated progressively over 6 h in a closed glass chamber, and 11 sequentially collected fractions of dissociated GH water analyzed. Their hydrogen and oxygen isotopic compositions, and the concentrations of Cl and HCO3 remained essentially constant over time, except that the fraction collected during the first 50 minutes deviated partly from this pattern. Fraction #1 had a substantially higher Cl concentration, similar to that of pore water sampled immediately above (135–142 cm core depth) the main GH-bearing interval in that core. Like the subsequent fractions, however, the HCO3 concentration was markedly lower than that of pore water. For the GH water fractions #2 to #11, an essentially constant HCO3 /Cl ratio of 305 differed markedly from downcore pore water HCO3 /Cl ratios of 63–99. Evidently, contamination of the extracted GH water by ambient pore water probably adhered to the massive GH sample was satisfactorily restricted to the initial phase of GH dissociation. The hydrogen and oxygen isotopic composition of hydrate-forming water was estimated using the measured isotopic composition of extracted GH water combined with known isotopic fractionation factors between GH and GH-forming water. Estimated δD of ?126 to ?133‰ and δ18O of ?15.7 to ?16.7‰ differed partly from the corresponding signatures of ambient pore water (δD of ?123‰, δ18O of ?15.6‰) and of lake bottom water (δD of ?121‰, δ18O of ?15.8‰) at the St6GC4 coring site, suggesting that the GH was not formed from those waters. Observations of breccias in that core point to a possible deep-rooted water source, consistent with published thermal measurements for the neighboring Kukuy K-2 MV. By contrast, the pore waters of core St6GC4 and also of the neighboring cores GC2 and GC3 from the Kukuy K-9 MV show neither isotopic nor ionic evidence of such a source (e.g., elevated sulfate concentration). These findings constrain GH formation to earlier times, but a deep-rooted source of hydrate-forming water remains ambiguous. A possible long-term dampening of key deep-water source signatures deserves further attention, notably in terms of diffusion and/or advection, as well as anaerobic oxidation of methane.  相似文献   

10.
南海东沙海域天然气水合物与地质构造的关系   总被引:4,自引:0,他引:4  
构造作用和构造过程是控制天然气水合物发育和赋存的重要地质因素之一。陆坡区复杂的构造运动能够形成良好的气体运移通道以及欠压实、高孔隙的水合物储集空间。东沙群岛邻近海域具有水深变化大、沉积厚度大、沉积速率高和有机质丰富等天然气水合物有利赋存条件,最新的研究已经在该海域发现了天然气水合物赋存的地球物理证据BSR,针对东沙群岛海域广泛发育的断裂、底辟、海底滑坡等构造,开展了其与天然气水合物成藏的关系研究,可以进一步深入了解天然气水合物在东沙群岛不同地质构造中的分布特征与演化,为该区天然气远景评估提供参考。  相似文献   

11.
He, Ar, Ne contents and 3He/4He, 4He/20Ne, and 40Ar/36Ar ratios in gas-hydrate bearing sea-floor sediments of the Håkon Mosby Mud Volcano show that Ne, Ar, and part of He are atmospheric. Nonatmospheric, deep He (3He/4He=0.9???10-8) is present in all samples. Helium isotopic composition suggests that its origin is uniform, crustal (radiogenic) and, probably, connected with mud volcano gases. Apparently deep helium is residual gas that remains in isolated volumes after hydrate formation. Measured helium content in hydrate gases is very low: 0.5–10?ppm. but in one particular sample it is very high: 7080?ppm.  相似文献   

12.
Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits.  相似文献   

13.
Studies of four gravity cores from the Håkon Mosby Mud Volcano area have shown the existence of three lithologic–stratigraphic units: I – brown clay (0–10?ka), II – gray clay (10–30?ka) and III – gray silt (30–61?ka). The units reflect different paleographic sedimentation and conditions, including the influence of mud volcanic activity. Two periods of mud volcanic activity can probably be discerned: 10–30?ka and Recent. The coexistence of Pleistocene and Late Pliocene benthic foraminifera suggests that the source depth of the volcano is located below the Pliocene–Pleistocene boundary.  相似文献   

14.
Many mud diapirs have been recognized in southern Okinawa Trough by a multi-channel seismic surveying on R/V KEXUE I in 2001. Gas hydrates have been identified, by the seismic reflection characteristics, the velocity analysis and the impedance inversion. Geothermal heat flow around the central of the mud diapir has been determined theoretically by the Bottom Simulating Reflectors (BSRs). Comparing the BSR derived and the measured heat flow values, we infer that the BSR immediately at the top of the mud diapirs indicate the base of the saturated gas hydrate formation zone (BSGHFZ), but not, as we ordinarily know, the base of the gas hydrate stability zone (BGHSZ), which could be explained by the abnormal regional background heat flow and free gas flux associated with mud diapirs. As a result, it helps us to better understand the generation mechanism of the gas hydrates associated with mud diapirs and to predict the gas hydrate potential in the southern Okinawa Trough.  相似文献   

15.
Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea   总被引:1,自引:0,他引:1  
The Sorokin Trough (Black Sea) is characterized by diapiric structures formed in a compressional tectonic regime that facilitate fluid migration to the seafloor. We present acoustic data in order to image details of mud volcanoes associated with the diapirs. Three types of mud volcanoes were distinguished: cone-shaped, flat-topped, and collapsed structures. All mud volcanoes, except for the Kazakov mud volcano, are located above shallow mud diapirs and diapiric ridges. Beyond the known near-surface occurrence of gas hydrates, bottom simulating reflectors are not seen on our seismic records, but pronounced lateral amplitude variations and bright spots may indicate the presence of gas hydrates and free gas.  相似文献   

16.
Pelotas Basin has the largest gas hydrate occurrence of the Brazilian coast. The reserves are estimated in 780 trillion cubic feet, covering an area of 45,000 km2. In this work we apply spectral decomposition technique in order to better understand a gas hydrate deep water system, performing a continuous time–frequency analysis of seismic trace, where frequency spectrum is the output for each time sample of the seismic trace. This allows a continuous analysis on the effects of the geologic structures and lithology over frequency content of the seismic wave. Spectral anomalies found were interpreted as variations of hydrates concentration inside the Gas Hydrate Stability Zone (GHSZ), as well free gas accumulations beneath and Below the GHSZ and gas chimneys. We concluded that this technique has a good potential to assist seismic study of structures associated with gas hydrates accumulations.  相似文献   

17.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

18.
The Håkon Mosby mud volcano is a 1.5-km-diameter geological structure located on the Southwest Barents Sea slope at a water depth of 1,270 m. High-definition seabed mapping of the mud volcano has been carried out in 2003 and 2006. A comparative analysis of the bathymetry and backscatter maps produced from the two surveys shows subtle morphological changes over the entire crater of the mud volcano, interpreted to be the consequence of mud eruption events. Mud temperature measurements point to a persistently warm mud at shallow depth in the crater. This is explained by upward fluid advection, rather than conductive cooling of mud flows. The small-scale spatial variability in the temperature distribution may be related to mud outflows or changes in the fluid flow regime. Furthermore, the locations of free gas venting observed in 2006 were found to differ from those of 2003. Our observations of overall similar topographic profiles across the mud volcano in 2003 and 2006 suggest that eruption events would have been modest. Nevertheless, the data bring evidence of significant change in activity even over short time intervals of only 3 years. This may be a characteristic shared by other submarine mud volcanoes, notably those considered to be in a quiescent stage.  相似文献   

19.
The Hikurangi Margin, east of the North Island of New Zealand, is known to contain significant deposits of gas hydrates. This has been demonstrated by several multidisciplinary studies in the area since 2005. These studies indicate that hydrates in the region are primarily located beneath thrust ridges that enable focused fluid flow, and that the hydrates are associated with free gas. In 2009–2010, a seismic dataset consisting of 2766 km of 2D seismic data was collected in the undrilled Pegasus Basin, which has been accumulating sediments since the early Cretaceous. Bottom-simulating reflections (BSRs) are abundant in the data, and they are accompanied by other features that indicate the presence of free gas and concentrated accumulations of gas hydrate. We present results from a detailed qualitative analysis of the data that has made use of automated high-density velocity analysis to highlight features related to the hydrate system in the Pegasus Basin. Two scenarios are presented that constitute contrasting mechanisms for gas-charged fluids to breach the base of the gas hydrate stability zone. The first mechanism is the vertical migration of fluids across layers, where flow pathways do not appear to be influenced by stratigraphic layers or geological structures. The second mechanism is non-vertical fluid migration that follows specific strata that crosscut the BSR. One of the most intriguing features observed is a presumed gas chimney within the regional gas hydrate stability zone that is surrounded by a triangular (in 2D) region of low reflectivity, approximately 8 km wide, interpreted to be the result of acoustic blanking. This chimney structure is cored by a ∼200-m-wide low-velocity zone (interpreted to contain free gas) flanked by high-velocity bands that are 200–400 m wide (interpreted to contain concentrated hydrate deposits).  相似文献   

20.
This study aims to constrain the base of the hydrates stability field in structurally complexsites using the case of Woolsey Mound, a fault-controlled, transient, thermogenic hydrates system, in Mississippi Canyon Block 118, northern Gulf of Mexico. We have computed the base of the hydrates stability field integrating results from a recent heat-flow survey, designed to investigate geothermal anomalies along fault zones which exhibit different fluid flux regimes. An advanced “compositional” simulator was used to model hydrate formation and dissociation at Woolsey Mound and addresses the following hypotheses:
  • 1.Migrating thermogenic fluids alter thermal conditions of the Hydrate Stability Zone (HSZ), so heat-flow reflects fault activity;
  • 2.Gas hydrate formation and dissociation vary temporally at active faults, temporarily sealing conduits for migration of thermogenic fluids;
  • 3.High salinity and inclusion of thermogenic gases with higher molecular weight than methane produce opposite effects on the depth to the bottom of the hydrate stability zone.
Applications of results include identifying and quantifying hydrate deposits in shallow sediments using an interdisciplinary approach that includes multiple resolution seismic data evaluation, geological and geochemical groundtruthing and heat-flow analyses as a proxy for activity along faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号